Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
1.
Biomed Pharmacother ; 174: 116560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583338

RESUMO

Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 µg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 µg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.


Assuntos
Autofagia , Ferroptose , Infarto da Artéria Cerebral Média , Recuperação de Função Fisiológica , Animais , Autofagia/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Masculino , Camundongos , Recuperação de Função Fisiológica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Venenos de Vespas/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Modelos Animais de Doenças , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
2.
Pharmacol Res ; 200: 107069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218356

RESUMO

The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.


Assuntos
Peptídeos Antimicrobianos , Venenos de Vespas , Venenos de Vespas/farmacologia , Venenos de Vespas/química , Peptídeos/química
3.
FEBS J ; 291(5): 865-883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997610

RESUMO

Mastoparans are cationic peptides with multifunctional pharmacological properties. Mastoparan-R1 and mastoparan-R4 were computationally designed based on native mastoparan-L from wasps and have improved therapeutic potential for the control of bacterial infections. Here, we evaluated whether these peptides maintain their activity against Escherichia coli strains under a range of salt concentrations. We found that mastoparan-R1 and mastoparan-R4 preserved their activity under the conditions tested, including having antibacterial activities at physiological salt concentrations. The overall structure of the peptides was investigated using circular dichroism spectroscopy in a range of solvents. No significant changes in secondary structure were observed (random coil in aqueous solutions and α-helix in hydrophobic and anionic environments). The three-dimensional structures of mastoparan-R1 and mastoparan-R4 were elucidated through nuclear magnetic resonance spectroscopy, revealing amphipathic α-helical segments for Leu3-Ile13 (mastoparan-R1) and Leu3-Ile14 (mastoparan-R4). Possible membrane-association mechanisms for mastoparan-R1 and mastoparan-R4 were investigated through surface plasmon resonance and leakage studies with synthetic POPC and POPC/POPG (4:1) lipid bilayers. Mastoparan-L had the highest affinity for both membrane systems, whereas the two analogs had weaker association, but improved selectivity for lysing anionic membranes. This finding was also supported by molecular dynamics simulations, in which mastoparan-R1 and mastoparan-R4 were found to have greater interactions with bacteria-like membranes compared with model mammalian membranes. Despite having a few differences in their functional and structural profiles, the mastoparan-R1 analog stood out with the highest activity, greater bacteriostatic potential, and selectivity for lysing anionic membranes. This study reinforces the potential of mastoparan-R1 as a drug candidate.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos , Animais , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Escherichia coli , Cloreto de Sódio , Computadores , Mamíferos
4.
Biochimie ; 216: 99-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879427

RESUMO

Cancer is a huge public health problem being one of the main causes of death globally. Specifically, melanoma is one of the most threatening cancer types due to the metastatic capacity, treatment resistance and mortality rates. It is evident the urgent need for research on new agents with pharmacological potential for cancer treatment, in order to develop new cancer therapeutic strategies and overcome drug resistance. The present work investigated the anti-tumoral potential of Chartergellus-CP1 peptide, isolated from Chartergellus communis wasp venom on human melanoma cell lines with different pigmentation degrees, namely the amelanotic cell line A375 and pigmented cell line MNT-1. Chartergellus-CP1 induced selective cytotoxicity to melanoma cell lines when compared to the lower induced cytotoxicity towards to nontumorigenic keratinocytes. Chartergellus-CP1 peptide induced apoptosis in both melanoma cell lines, cell cycle impairment in amelanotic A375 cells and intracellular ROS increase in pigmented MNT-1 cells. The amelanotic A375 cell line showed higher sensitivity to the peptide than the pigmented cell line MNT-1. From our knowledge, this is the first study reporting the cytotoxic effects of Chartergellus-CP1 on melanoma cells.


Assuntos
Antineoplásicos , Melanoma , Humanos , Melanoma/patologia , Venenos de Vespas/farmacologia , Venenos de Vespas/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Apoptose
5.
J Ethnopharmacol ; 317: 116700, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315652

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic inflammatory disease that is related to the aberrant proliferation of fibroblast-like synoviocytes (FLS). Wasp venom (WV, Vespa magnifica, Smith), an insect secretion, has been used to treat RA in Chinese Jingpo national minority's ancient prescription. However, the potential mechanisms haven't been clarified. AIM OF THE STUDY: The purposes of this paper were two-fold. First, to investigate which was the best anti-RA effective part of WV-I (molecular weight less than 3 kDa), WV-II (molecular weight 3-10 kDa) and WV-III (molecular weight more than 10 kDa) that were separated from WV. Second, to explore the underlying molecular mechanism of WV and WV-II that was best effective part in RA. MATERIALS AND METHODS: The wasps were electrically stimulated and the secretions were collected. WV-I, WV-II and WV-III were acquired by ultracentrifuge method according to molecular weight. Next, WV, WV-I, WV-II and WV-III were identified by HPLC. Functional annotation and pathway analysis of WV used to bioinformatics analysis. RNA-seq analyses were constructed to identify differentially expressed genes (DEGs). GO and KEGG pathway analyses were performed by Metascape database. STRING was used to analyze the PPI network from DEGs. Next, PPI network was visualized using Cytoscape that based on MCODE. The pivotal genes of PPI network and MCODE analysis were verified by qRT-PCR. Subsequently, MH7A cells were performed by MTT assay to evaluate the ability of inhibiting cell proliferation. Luciferase activity assay was conducted in HepG2/STAT1 or HepG2/STAT3 cells to assess STAT1/3 sensitivity of WV, WV-I, WV-II and WV-III. Additionally, interleukin (IL)-1ß and IL-6 expression levels were detected by ELISA kits. Intracellular thioredoxin reductase (TrxR) enzyme was evaluated by TrxR activity assay kit. ROS levels, lipid ROS levels and Mitochondrial membrane potential (MMP) were assessed by fluorescence probe. Cell apoptosis and MMP were measured by using flow cytometry. Furthermore, the key proteins of JAK/STAT signaling pathway, protein levels of TrxR and glutathione peroxidase 4 axis (GPX4) were examined by Western blotting assay. RESULTS: RNA-sequencing analysis of WV displayed be related to oxidation-reduction, inflammation and apoptosis. The data displayed that WV, WV-II and WV-III inhibited significantly cells proliferation in human MH7A cell line compared to WV-I treatment group, but WV-III had no significant suppressive effect on luciferase activity of STAT3 compared with IL-6-induced group. Combined with earlier reports that WV-III contained major allergens, we selected WV and WV-II further to study the mechanism of anti-RA. In addition, WV and WV-II decreased the level of IL-1ß and IL-6 in TNF-α-induced MH7A cells via inactivating of JAK/STAT signaling pathway. On the other hand, WV and WV-II down-regulated the TrxR activity to produce ROS and induce cell apoptosis. Furthermore, WV and WV-II could accumulate lipid ROS to induce GPX4-mediated ferroptosis. CONCLUSIONS: Taken together, the experimental results revealed that WV and WV-II were potential therapeutic agents for RA through modulating JAK/STAT signaling pathways, redox homeostasis and ferroptosis in MH7A cells. Of note, WV-II was an effective part and the predominant active monomer in WV-II will be further explored in the future.


Assuntos
Artrite Reumatoide , Ferroptose , Sinoviócitos , Vespas , Animais , Humanos , Venenos de Vespas/farmacologia , Venenos de Vespas/metabolismo , Venenos de Vespas/uso terapêutico , Interleucina-6/metabolismo , Vespas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proliferação de Células , Antioxidantes/farmacologia , Oxirredução , Fibroblastos , Luciferases , Lipídeos/farmacologia , Células Cultivadas
6.
Vector Borne Zoonotic Dis ; 23(2): 63-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577051

RESUMO

Background: High frequency of Helicobacter pylori infection and the unknown mode of transmission prompted us to investigate H. pylori-wild housefly relationship. H. pylori causes chronic gastritis, peptic ulcers, and stomach cancer. H. pylori persists in the gut of the experimentally infected houseflies. The existence of H. pylori strains isolated from wild houseflies, on the other hand, has never been documented. Materials and Methods: In this study, 902 wild houseflies from different sites were identified as Musca domestica, then 60 flies were screened by traditional microbiological techniques and H. pylori-specific 16S rRNA gene. The antibiotic resistance (ART) was investigated phenotypically. Wild housefly gut bacterial isolates were further evaluated genotypically to have 23S rRNA gene mutation related to clarithromycin resistance. To find efficient therapeutic alternatives, the potency of three plant extracts (garlic, ginger, and lemon) and the wasp, Vespa orientalis venom was evaluated against H. pylori. The cytotoxic effect of the crude wasp venom, the most potent extract, against Vero and Colon cancer (Caco2) cell lines was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: All isolates from houseflies were positive. The isolated bacteria have variable resistance to frequently used antibiotics in all isolates. Minimum inhibitory concentration values of 15.625 mg/mL for both ginger and lemon extracts, 7.8125 mg/mL for garlic extract, and 0.0313 mg/mL for wasp venom were recorded. Wasp venom has the most potent antibacterial activity compared with the four antibiotics that are currently used in therapies against H. pylori. Conclusion: We conclude that wild houseflies can play a role in disseminating H. pylori. The housefly gut may be a suitable environment for the horizontal transfer of ART genes among its associated microbiome and H. pylori. Wasp venom proved its potential activity as a new and effective anti-H. pylori drug for both therapeutic and preventative usage.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Moscas Domésticas , Animais , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , Moscas Domésticas/microbiologia , Helicobacter pylori/genética , Células CACO-2 , RNA Ribossômico 16S , Venenos de Vespas/farmacologia , Venenos de Vespas/uso terapêutico , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária
7.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897844

RESUMO

Mastoparan (MP) is an antimicrobial cationic tetradecapeptide with the primary structure INLKALAALAKKIL-NH2. This amphiphilic α-helical peptide was originally isolated from the venom of the wasp Paravespula lewisii. MP shows a variety of biological activities, such as inhibition of the growth of Gram-positive and Gram-negative bacteria, as well as hemolytic activity and activation of mast cell degranulation. Although MP appears to be toxic, studies have shown that its analogs have a potential therapeutic application as antimicrobial, antiviral and antitumor agents. In the present study we have designed and synthesized several new chimeric mastoparan analogs composed of MP and other biologically active peptides such as galanin, RNA III inhibiting peptide (RIP) or carrying benzimidazole derivatives attached to the ε-amino side group of Lys residue. Next, we compared their antimicrobial activity against three reference bacterial strains and conformational changes induced by membrane-mimic environments using circular dichroism (CD) spectroscopy. A comparative analysis of the relationship between the activity of peptides and the structure, as well as the calculated physicochemical parameters was also carried out. As a result of our structure-activity study, we have found two analogs of MP, MP-RIP and RIP-MP, with interesting properties. These two analogs exhibited a relatively high antibacterial activity against S. aureus compared to the other MP analogs, making them a potentially attractive target for further studies. Moreover, a comparative analysis of the relationship between peptide activity and structure, as well as the calculated physicochemical parameters, may provide information that may be useful in the design of new MP analogs.


Assuntos
Anti-Infecciosos , Venenos de Vespas , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos e Proteínas de Sinalização Intercelular , Testes de Sensibilidade Microbiana , Peptídeos/química , Staphylococcus aureus , Relação Estrutura-Atividade , Venenos de Vespas/química , Venenos de Vespas/farmacologia
8.
Toxicon ; 216: 148-156, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35839869

RESUMO

Breast cancer represents the most incident cancer in women. Surgery, chemotherapy, radiation therapy, and hormone therapy remain the main treatment for this type of cancer. However, increasing resistance to anti-cancer drugs through poor response for some types of breast cancer to treatments highlights the need to develop new therapeutic agents to fight the disease. In this study, we evaluated the anti-tumor potential of the Chartergellus-CP1 peptide isolated from the wasp venom of Chartergellus communis in human breast cancer cell lines MCF-7 (HR+) and MDA-MB-231 (triple-negative). Cells viability, morphology, cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis were assessed for both cell lines after exposure to Chartergellus-CP1 during 24 and 48 h. The results showed that Chartergellus-CP1 led to a significant increase of cells in the S phase in addition to a high generation of ROS (being more evident in the MCF-7 cell line) associated with apoptotic cell death. This work demonstrates, for the first time, the cytotoxic effects of Chatergellus-CP1 on human breast cancer cell lines including cell cycle profile, oxidative stress generation, and cell death mechanisms.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Venenos de Vespas/farmacologia
9.
Biomolecules ; 12(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35454116

RESUMO

Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.


Assuntos
Hipersensibilidade , Vespas , Alérgenos , Animais , Peptídeos/farmacologia , Venenos de Vespas/química , Venenos de Vespas/farmacologia
10.
Toxins (Basel) ; 14(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35448865

RESUMO

This study investigated the effects of wasp venom (WV) from the yellow-legged hornet, Vespa velutina, on scopolamine (SCO)-induced memory deficits in mice, as well as the antioxidant activity in HT22 murine hippocampal neuronal cells in parallel comparison with bee venom (BV). The WV was collected from the venom sac, freeze-dried. Both venoms exhibited free radical scavenging capabilities in a concentration-dependent manner. In addition, the venom treatment enhanced cell viability at the concentrations of ≤40 µg/mL of WV and ≤4 µg/mL of BV in glutamate-treated HT22 cells, and increased the transcriptional activity of the antioxidant response element (ARE), a cis-acting enhancer which regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-downstream antioxidant enzymes. Concurrently, WV at 20 µg/mL significantly increased the expression of a key antioxidant enzyme heme oxygenase 1 (HO-1) in HT22 cells despite no significant changes observed in the nuclear level of Nrf2. Furthermore, the intraperitoneal administration of WV to SCO-treated mice at doses ranged from 250 to 500 µg/kg body weight ameliorated memory impairment behavior, reduced histological injury in the hippocampal region, and reduced oxidative stress biomarkers in the brain and blood of SCO-treated mice. Our findings demonstrate that WV possess the potential to improve learning and memory deficit in vivo while further study is needed for the proper dose and safety measures and clinical effectiveness.


Assuntos
Venenos de Abelha , Escopolamina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Venenos de Abelha/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Escopolamina/uso terapêutico , Escopolamina/toxicidade , Venenos de Vespas/farmacologia
11.
Neuropeptides ; 93: 102233, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35305448

RESUMO

Approximately 46.8 million people have been diagnosed worldwide with dementia, of which the most common type is Alzheimer's disease (AD). Since the current AD treatment is incipient and limited, it is essential to develop new drugs to prevent AD. Considering that evolutionary pressure selected animal venom compounds that are very specific for a unique target, those can be a potential drug against AD. Octovespin was modified from occidentalin-1202, which is a peptide isolated from Polybia occidentalis wasp venom. In this context, this study evaluated the effect of treatment with octovespin against Amyloid-ß (Aß)-induced toxicity, which is postulated to be one of the main causes of AD, in both in vitro and in vivo tests. In vitro, octovespin was able to prevent Aß aggregation in a ThT assay. In vivo, octovespin (0.15 nmol/animal) reverses memory impairment that is due to Aß toxicity, in the Morris Water Maze and Novel Object Recognition Test. Our results suggested that octovespin is a potential drug for the treatment of AD, due to its ability to avoid Aß aggregation in vitro and to prevent Aß -induced memory deficit in mice.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/farmacologia , Animais , Cognição , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Venenos de Vespas/farmacologia
12.
PLoS One ; 17(3): e0264035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35255107

RESUMO

Alternatives of conventional antibiotics have become an urgent need to control drug-resistant bacteria. Therefore, search for new antibacterial agents has become a trend in several microbiological and pharmaceutical scientific works. Insects, one of the most successful and evolved species on earth is known to be an effective natural source of several medically useful chemicals including antibacterial agents. There is considerable evidence of using wasp venom against medical ailments in several parts of the world. In this work venom from Polistes wattii Cameron, 1900 collected from Eastern Province, Saudi Arabia was evaluated for its antibacterial activities. Such activity was tested against four pathogenic bacteria: two-gram positive Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB 017(1) ATCC 25175) and two gram-negative (Salmonella typhimurium NCTC 12023 ATCC 14028 and Enterobacter cloacae (RCMB 001(1) ATCC 23355). Also, chemical characterization of wasp venom was done using HPLC and two isolated peptides were sequenced. The result indicates the potent anti-microbial effect of the venom against the four tested bacteria. The most sensitive bacteria were Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB 017(1) ATCC 25175). The sequence of the two purified peptides indicates that they belong to mastoparan. The study results may pave way to use this wasp venom in future antibiotics especially in controlling skin infection by Staphylococcus aureus.


Assuntos
Infecções Estafilocócicas , Vespas , Animais , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Arábia Saudita , Staphylococcus aureus , Venenos de Vespas/química , Venenos de Vespas/farmacologia
13.
Pharm Biol ; 60(1): 334-346, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35171059

RESUMO

CONTEXT: Acute ischaemic stroke (AIS) is a major cause of disability and death, which is a serious threat to human health and life. Wasp venom extracted from Vespa magnifica Smith (Vespidae) could treat major neurological disorders. OBJECTIVE: This study investigated the effects of wasp venom on AIS in rats. MATERIAL AND METHODS: We used a transient middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats (260-280 g, n = 8-15) with a sham operation group being treated as negative control. MCAO rats were treated with wasp venom (0.05, 0.2 and 0.6 mg/kg, i.p.) using intraperitoneal injection. After treatment 48 h, behavioural tests, cortical blood flow (CBF), TTC staining, H&E staining, Nissl staining, TUNEL assay, immunohistochemistry (IHC) and ELISA were employed to investigate neuroprotective effects of wasp venom. RESULTS: Compared with the MCAO group, wasp venom (0.6 mg/kg) improved neurological impairment, accelerated CBF recovery (205.6 ± 52.92 versus 216.7 ± 34.56), reduced infarct volume (337.1 ± 113.2 versus 140.7 ± 98.03) as well as BBB permeability as evidenced by changes in claudin-5 and AQP4. In addition, function recovery of stroke by wasp venom treatment was associated with a decrease in TNF-α, IL-1ß, IL-6 and inhibition activated microglia as well as apoptosis. Simultaneously, the wasp venom regulated the angiogenesis factors VEGF and b-FGF in the brain. CONCLUSIONS: Wasp venom exhibited a potential neuroprotective effect for AIS. In the future, we will focus on determining whether the observed actions were due to a single compound or the interaction of multiple components of the venom.


Assuntos
Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Venenos de Vespas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infarto da Artéria Cerebral Média , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Venenos de Vespas/administração & dosagem , Vespas
14.
PLoS One ; 17(2): e0264093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202419

RESUMO

BACKGROUND: Lung cancer in men and women is considered the leading cause for cancer-related mortality worldwide. Anti-cancer peptides represent a potential untapped reservoir of effective cancer therapy. METHODOLOGY: Box-Behnken response surface design was applied for formulating Alendronate sodium (ALS)-mastoparan peptide (MP) nanoconjugates using Design-Expert software. The optimization process aimed at minimizing the size of the prepared ALS-MP nanoconjugates. ALS-MP nanoconjugates' particle size, encapsulation efficiency and the release profile were determined. Cytotoxicity, cell cycle, annexin V staining and caspase 3 analyses on A549 cells were carried out for the optimized formula. RESULTS: The results revealed that the optimized formula was of 134.91±5.1 nm particle size. The novel ALS-MP demonstrated the lowest IC50 (1.3 ± 0.34 µM) in comparison to ALS-Raw (37.6 ± 1.79 µM). Thus, the results indicated that when optimized ALS-MP nanoconjugate was used, the IC50 of ALS was also reduced by half. Cell cycle analysis demonstrated a significantly higher percentage of cells in the G2-M phase following the treatment with optimized ALS-MP nanoconjugates. CONCLUSION: The optimized ALS-MP formula had significantly improved the parameters related to the cytotoxic activity towards A549 cells, compared to control, MP and ALS-Raw.


Assuntos
Alendronato/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanoconjugados/uso terapêutico , Venenos de Vespas/farmacologia , Células A549 , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Tamanho da Partícula
15.
Toxins (Basel) ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35051036

RESUMO

We analyzed, for the first time, the major components and biological properties of the venom of Vespa bicolor, a wasp from South China. Using HPLC and SDS-PAGE, combined with LC-MS/MS, MALDI-TOF-MS, and NMR data to analyze V. bicolor venom (VBV), we found that VBV contains three proteins (hyaluronidase A, phospholipase A1 (two isoforms), and antigen 5 protein) with allergenic activity, two unreported proteins (proteins 5 and 6), and two active substances with large quantities (mastoparan-like peptide 12a (Vb-MLP 12a), and 5-hydroxytryptamine (5-HT)). In addition, the antimicrobial activity of VBV was determined, and results showed that it had a significant effect against anaerobic bacteria. The minimum inhibitory concentration and minimum bactericidal concentration for Propionibacterium acnes were 12.5 µg/mL. Unsurprisingly, VBV had strong antioxidant activity because of the abundance of 5-HT. Contrary to other Vespa venom, VBV showed significant anti-inflammatory activity, even at low concentrations (1 µg/mL), and we found that Vb-MLP 12a showed pro-inflammatory activity by promoting the proliferation of RAW 264.7 cells. Cytotoxicity studies showed that VBV had similar antiproliferative effects against all tested tumor cell lines (HepG2, Hela, MCF-7, A549, and SASJ-1), with HepG2 being the most susceptible. Overall, this study on VBV has high clinical importance and promotes the development of Vespa bicolor resources.


Assuntos
Proteínas de Insetos , Venenos de Vespas , Vespas/química , Células A549 , Animais , China , Células HeLa , Células Hep G2 , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Células MCF-7 , Testes de Sensibilidade Microbiana , Venenos de Vespas/química , Venenos de Vespas/farmacologia
16.
Molecules ; 27(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35056876

RESUMO

Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure-activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Venenos de Vespas/química , Venenos de Vespas/farmacologia , Substituição de Aminoácidos , Animais , Antibacterianos/síntese química , Peptídeos Antimicrobianos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Modelos Estruturais , Estrutura Secundária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Vespas/química
17.
Amino Acids ; 54(1): 123-135, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34825276

RESUMO

Due to the limited effects of conventional antibiotics on the increasing emergence of drug-resistant bacteria and fungi, novel antimicrobial agents were urgently needed to alleviate this phenomenon. Nowadays, antimicrobial peptides are believed to be a promising candidate for a new generation of antimicrobial drugs. Antimicrobial peptide polybia-MPII (MPII) was first isolated from the venom of the social wasp Polybia paulista with a broad spectrum of antimicrobial activity. In the present study, the counterparts and mimics of cationic amino acids of Lys, such as Arg, His, Orn, Dab and Dap were employed to substitute Lys in the sequence of MPII. The effects of the incorporation of these amino acids on its antimicrobial activity, hemolytic activity, cytotoxicity, enzyme stability and therapeutic potential were explored. Our results showed that although the incorporation of Arg could improve its antimicrobial activity, there is no improvement in enzyme stability. The incorporation of His makes MPII exert its antimicrobial activity in a pH-dependent manner. Notably, incorporating Dap could effectively decrease its hemolytic activity and cytotoxicity and enhance its enzyme stability against trypsin. In conclusion, this study would provide an effective strategy to improve the bioavailability and metabolic stability of AMPs while decrease their hemolytic activity and cytotoxicity.


Assuntos
Anti-Infecciosos , Vespas , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Lisina , Testes de Sensibilidade Microbiana , Venenos de Vespas/química , Venenos de Vespas/farmacologia , Vespas/química
18.
Toxins (Basel) ; 13(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34822528

RESUMO

Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion's share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp's eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field.


Assuntos
Toxinas Biológicas/farmacologia , Venenos de Vespas , Vespas/química , Animais , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Venenos de Vespas/química , Venenos de Vespas/metabolismo , Venenos de Vespas/farmacologia
19.
Toxicon ; 200: 48-54, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34237341

RESUMO

Antibiotic-resistant bacteria are a major threat to global public health, and there is an urgent need to find effective, antimicrobial treatments that can be well tolerated by humans. Hornet venom is known to have antimicrobial properties, and contains peptides with similarity to known antimicrobial eptides (AMPs), mastoparans. We identified multiple new AMPs from the venom glands of Vespa ducalis (U-VVTX-Vm1a, U-VVTX-Vm1b, and U-VVTX-Vm1c), Vespa mandarinia (U-VVTX-Vm1d), and Vespa affinis (U-VVTX-Vm1e). All of these AMPs have highly similar sequences and are related to the toxic peptide, mastoparan. Our newly identified AMPs have α-helical structures, are amphiphilic, and have antimicrobial properties. Both U-VVTX-Vm1b and U-VVTX-Vm1e killed bacteria, Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922, at the concentrations of 16 µg/mL and 32 µg/mL, respectively. None of the five AMPs exhibited strong toxicity as measured via their hemolytic activity on red blood cells. U-VVTX-Vm1b was able to increase the permeability of E. coli ATCC25922 and degrade its genomic DNA. These results are promising, demonstrate the value of investigating hornet venom as an antimicrobial treatment, and add to the growing arsenal of such naturally derived treatments.


Assuntos
Anti-Infecciosos , Vespas , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Escherichia coli , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/farmacologia , Venenos de Vespas/farmacologia
20.
Int J Nanomedicine ; 16: 3755-3773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103914

RESUMO

PURPOSE: Acinetobacter baumannii antibiotic resistant infections in high-risk patients are a great challenge for researchers and clinicians worldwide. In an effort to achieve potent bactericidal outcomes, a novel chitosan-mastoparan nanoconstruct (Mast-Cs NC) was designed and assessed for its therapeutic potential through in silico, in vitro and in vivo experimentation against clinical multidrug-resistant (MDR) A. baumannii. METHODS: Optimized 3D structures of mastoparan and chitosan were coupled computationally through an ionic cross-linker to generate a circular ring of chitosan encasing mastoparan. The complex was assessed for interactions and stability through molecular dynamic simulation (MDS). Binding pocket analysis was used to assess the protease-peptide interface. Mast-Cs NC were prepared by the ionic gelation method. Mast-Cs NC were evaluated in vitro and in vivo for their therapeutic efficacy against drug-resistant clinical A. baumannii. RESULTS: MDS for 100 ns showed stable bonds between chitosan and mastoparan; the first at chitosan oxygen atom-46 and mastoparan isoleucine carbon atom with a distance of 2.77 Å, and the second between oxygen atom-23 and mastoparan lysine nitrogen atom with a distance of 2.80 Å, and binding energies of -3.6 and -7.4 kcal/mol, respectively. Mast-Cs complexes approximately 156 nm in size, with +54.9 mV zeta potential and 22.63% loading capacity, offered >90% encapsulation efficiency and were found to be geometrically incompatible with binding pockets of various proteases. The MIC90 of Mast-Cs NC was significantly lower than that of chitosan (4 vs 512 µg/mL, respectively, p<0.05), with noticeable bacterial damage upon morphological analysis. In a BALB/c mouse sepsis model, a significant reduction in bacterial colony count in the Mast-Cs treated group was observed compared with chitosan and mastoparan alone (p<0.005). Mast-Cs maintained good biocompatibility and cytocompatibility. CONCLUSION: Novel mastoparan-loaded chitosan nanoconstructs signify a successful strategy for achieving a synergistic bactericidal effect and higher therapeutic efficacy against MDR clinical A. baumannii isolates. The Mast-Cs nano-drug delivery system could work as an alternative promising treatment option against MDR A. baumannii.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Quitosana/química , Simulação por Computador , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Nanopartículas/química , Venenos de Vespas/farmacologia , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/isolamento & purificação , Adolescente , Adulto , Animais , Antibacterianos/farmacologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Nanopartículas/ultraestrutura , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA