Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Future Microbiol ; 19(12): 1081-1096, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39109507

RESUMO

Akkermansia muciniphila (A. muciniphila) is a 'star strain' that has attracted much attention in recent years. A. muciniphila can effectively regulate host metabolism, significantly affect host immune function, and play an important role in balancing host health and disease. As one of the organs most closely related to the gut (the two can communicate through the hepatic portal vein and bile duct system), liver is widely affected by intestinal microorganisms. A growing body of evidence suggests that A. muciniphila may alleviate liver-related diseases by improving the intestinal barrier, energy metabolism and regulating inflammation through its protein components and metabolites. This paper systematically reviews the key roles of A. muciniphila and its derivatives in maintaining liver health and improving liver disease.


[Box: see text].


Assuntos
Akkermansia , Microbioma Gastrointestinal , Fígado , Humanos , Akkermansia/fisiologia , Fígado/microbiologia , Fígado/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Hepatopatias/microbiologia , Verrucomicrobia/fisiologia , Probióticos
2.
Chem Commun (Camb) ; 60(68): 9089-9092, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39108142

RESUMO

Herein, we have developed a non-enzymatic, isothermal amplification assay (NIA sensor) based on a catalytic hairpin assembly (CHA) reaction for quantifying the relative abundance of Akkermansia muciniphila. Through detection of the MUC-1437 gene (limit of detection: 8.3 fM) in a dynamic range from 10 fM to 1 nM, the NIA sensor shows high sensitivity and selectivity in preclinical models of mice fed a normal or high-fat diet (HFD), and treated with antibiotics (ATB). The NIA sensor, which operates without the use of any enzymes, leading to simplicity and cost-effectiveness, has great potential for biosensing research and clinical diagnostic applications.


Assuntos
Akkermansia , Técnicas de Amplificação de Ácido Nucleico , Animais , Camundongos , Técnicas Biossensoriais , Antibacterianos/farmacologia , Dieta Hiperlipídica , Limite de Detecção , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
3.
Microbiologyopen ; 13(4): e1430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115291

RESUMO

The gut microbiota significantly contributes to human health and well-being. The aim of this study was to evaluate the stability and resilience of a consortium composed of three next-generation probiotics (NGPs) candidates originally found in the human gut. The growth patterns of Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Faecalibacterium prausnitzii were studied both individually and consortium. The growth kinetics of Akkermansia muciniphila (A. muciniphila), Bacteroides thetaiotaomicron (B. thetaiotaomicron), and Faecalibacterium prausnitzii (F. prausnitzii) were characterized both individually and in consortium using isothermal microcalorimetry and 16S ribosomal RNA next-generation sequencing. The consortium reached stability after three passages and demonstrated resilience to changes in its initial composition. The concentration of butyrate produced was nearly twice as high in the consortium compared to the monoculture of F. prausnitzii. The experimental conditions and methodologies used in this article are a solid foundation for developing further complex consortia.


Assuntos
Calorimetria , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Faecalibacterium prausnitzii/genética , Akkermansia/crescimento & desenvolvimento , Akkermansia/fisiologia , Consórcios Microbianos/fisiologia , Consórcios Microbianos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Butiratos/metabolismo , Probióticos , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , DNA Bacteriano/genética
4.
J Neuroimmune Pharmacol ; 19(1): 43, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141019

RESUMO

Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.


Assuntos
Akkermansia , Microbioma Gastrointestinal , AVC Isquêmico , Recuperação de Função Fisiológica , Animais , Masculino , Camundongos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica/fisiologia , Verrucomicrobia
5.
Front Cell Infect Microbiol ; 14: 1367998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027140

RESUMO

Introduction: Ulcerative colitis is an inflammatory disorder characterized by chronic inflammation in the gastrointestinal tract, mainly in the colon and rectum. Although the precise etiology of ulcerative colitis remains unclear, recent research has underscored the significant role of the microbiome in its development and progression. Methods: The aim of this study was to establish a relationship between the levels of specific gut bacterial species and disease relapse in ulcerative colitis. For this study, we recruited 105 ulcerative colitis patients in remission and collected clinical data, blood, and stool samples. Akkermansia muciniphila and Parabacteroides distasonis levels were quantified in the stool samples of ulcerative colitis patients. Binary logistic regression was applied to collected data to predict disease remission. Results: The median time in remission in this cohort was four years. A predictive model incorporating demographic information, clinical data, and the levels of Akkermansia muciniphila and Parabacteroides distasonis was developed to understand remission patterns. Discussion: Our findings revealed a negative correlation between the levels of these two microorganisms and the duration of remission. These findings highlight the importance of the gut microbiota in ulcerative colitis for disease prognosis and for personalized treatments based on microbiome interventions.


Assuntos
Akkermansia , Bacteroidetes , Colite Ulcerativa , Fezes , Microbioma Gastrointestinal , Recidiva , Humanos , Colite Ulcerativa/microbiologia , Feminino , Masculino , Adulto , Prognóstico , Pessoa de Meia-Idade , Bacteroidetes/isolamento & purificação , Fezes/microbiologia , Biomarcadores/sangue , Verrucomicrobia/isolamento & purificação , Adulto Jovem , Idoso
7.
Phytomedicine ; 132: 155847, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996505

RESUMO

BACKGROUND: Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE: This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS: Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS: HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1ß pathway and increased proinflammatory IL1ß in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1ß pathway. CONCLUSIONS: The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1ß pathway, specifically by targeting AKK and tryptophan metabolites.


Assuntos
Akkermansia , Antidepressivos , Depressão , Microbioma Gastrointestinal , Hypericum , Interleucina-1beta , NF-kappa B , Triptofano , Animais , Hypericum/química , Microbioma Gastrointestinal/efeitos dos fármacos , Depressão/tratamento farmacológico , Triptofano/metabolismo , Triptofano/farmacologia , Masculino , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Antidepressivos/farmacologia , Camundongos Endogâmicos C57BL , Caspase 1/metabolismo , Transplante de Microbiota Fecal , Verrucomicrobia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Modelos Animais de Doenças
8.
Phytomedicine ; 132: 155888, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084128

RESUMO

BACKGROUND: The efficacy of Liangxue Guyuan Yishen Decoction (LGYD), a traditional Chinese medicine, has been scientifically proven in the treatment of radiation-induced intestinal injury (RIII) and preservation of intestinal integrity and function following high-dose radiation exposure. However, further investigation is required to comprehensively elucidate the precise mechanisms underlying the therapeutic effects of LGYD in order to provide potential pharmaceutical options for radiation protection. PURPOSE: This study aims to elucidate the potential mechanism through which LGYD exerts its therapeutic effects on RIII by modulating the gut microbiota (GM). METHODS: 16 s rRNA analysis was employed to assess the impact of varying doses of whole body irradiation (WBI) on GM in order to establish an appropriate model for this study. The effects of LGYD on GM and SCFA were evaluated using 16 s rRNA and Quantification of SCFA. UHPLC-QE-MS was utilized to identify the active components in LGYD as well as LGYD drug containing serum (LGYD-DS). Subsequently, immunofluorescence and immunohistochemical staining were conducted to validate the influence of LGYD and/or characteristic microbiota on RIII recovery in vivo. The effects of LGYD-DS, characteristic flora, and SCFA on intestinal stem cell (ISC) were assessed by measuring organoid surface area in intestinal organoid model. RESULTS: The species composition and abundance of GM were significantly influenced by whole-body irradiation with a dose of 8.5 Gy, which was used as in vivo model. LGYD significantly improves the survival rate and promotes recovery from RIII. Additionally, LGYD exhibited a notable increase in the abundance of Akkermansia muciniphila (AKK) and levels of SCFA, particularly isobutyric acid. LGYD-DS consisted of seven main components derived from herbs of LGYD. In vivo experiments indicated that both LGYD and AKK substantially enhanced the survival rate after radiation and facilitated the recovery process for intestinal structure and function. In the organoid model, treatment with LGYD-DS, AKK supernatant or isobutyric acid significantly increased organoid surface area. CONCLUSIONS: LGYD has the potential to enhance RIII by promoting the restoration of intestinal stem cell, which is closely associated with the upregulation of AKK abundance and production of SCFA, particularly isobutyric acid.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Células-Tronco/efeitos dos fármacos , Akkermansia/efeitos dos fármacos , Verrucomicrobia/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/efeitos da radiação , Irradiação Corporal Total , Camundongos Endogâmicos C57BL
9.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892628

RESUMO

This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.


Assuntos
Akkermansia , Microbioma Gastrointestinal , Doenças não Transmissíveis , Probióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Probióticos/uso terapêutico , Animais , Doenças não Transmissíveis/prevenção & controle , Doenças não Transmissíveis/terapia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/terapia , Verrucomicrobia , Eixo Encéfalo-Intestino/fisiologia , Obesidade/microbiologia , Obesidade/terapia , Neoplasias/terapia , Neoplasias/microbiologia , Diabetes Mellitus/terapia , Diabetes Mellitus/microbiologia
10.
Nat Commun ; 15(1): 4582, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811534

RESUMO

The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited. Here, we first show that the mucin-binding properties of A. muciniphila are independent of environmental oxygen concentrations and not abolished by pasteurization. We then dissected the mucin-binding properties of pasteurized A. muciniphila by use of a recently developed cell-based mucin array that enables display of the tandem repeats of human mucins with distinct O-glycan patterns and structures. We found that A. muciniphila recognizes the unsialylated LacNAc (Galß1-4GlcNAcß1-R) disaccharide selectively on core2 and core3 O-glycans. This disaccharide epitope is abundantly found on human colonic mucins capped by sialic acids, and we demonstrated that endogenous A. muciniphila neuraminidase activity can uncover the epitope and promote binding. In summary, our study provides insights into the mucin-binding properties important for colonization of a key mucin-foraging bacterium.


Assuntos
Akkermansia , Mucinas , Polissacarídeos , Akkermansia/metabolismo , Humanos , Mucinas/metabolismo , Polissacarídeos/metabolismo , Neuraminidase/metabolismo , Ligação Proteica , Glicosilação , Dissacarídeos/metabolismo , Verrucomicrobia/metabolismo , Epitopos/metabolismo , Aderência Bacteriana
11.
Exp Neurol ; 378: 114823, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782351

RESUMO

The established role of disturbances in the microbiota-gut-brain axis in the development of diabetic cognitive impairment (DCI) has long been recognized. It has shown the potential of Akkermansia muciniphila (A. muciniphila) in improving metabolic disorders and exerting anti-inflammatory effects. However, there remains a lack of comprehensive understanding regarding the specific effects and mechanisms underlying the treatment of DCI with A. muciniphila. This study aimed to evaluate the potential of A. muciniphila in alleviating DCI in db/db mice. Eleven-week-old db/db mice were administered either live or pasteurized A. muciniphila (5 × 109 CFU/200 µL) for a duration of eight weeks. Administering live A. muciniphila significantly ameliorated cognitive impairments, improved the synaptic ultrastructure, and inhibited hippocampal neuron loss in the CA1 and CA3 subregions in db/db mice. Both live and pasteurized A. muciniphila effectively mitigated neuroinflammation. Moreover, live A. muciniphila increased the relative abundance of Lactococcus and Staphylococcus, whereas pasteurized A. muciniphila increased the relative abundance of Lactobacillus, Prevotellaceae_UCG_001, and Alistipes. Supplementation of A. muciniphila also induced alterations in serum and brain metabolites, with a particular enrichment observed in tryptophan metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and pentose and glucuronate interconversions. Correlation analysis further demonstrated a direct and substantial correlation between the altered gut microbiota and the metabolites in the serum and brain tissue. In conclusion, the results indicate that live A. muciniphila demonstrated greater efficacy compared to pasteurized A. muciniphila. The observed protective effects of A. muciniphila against DCI are likely mediated through the neuroinflammation and microbiota-metabolites-brain axis.


Assuntos
Akkermansia , Disfunção Cognitiva , Microbioma Gastrointestinal , Probióticos , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/dietoterapia , Disfunção Cognitiva/etiologia , Masculino , Probióticos/farmacologia , Probióticos/uso terapêutico , Verrucomicrobia , Camundongos Endogâmicos C57BL , Pasteurização
12.
Cell ; 187(11): 2687-2689, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788691

RESUMO

In this issue of Cell, Nie and co-authors report that the microbe-derived bile acid (BA) 3-succinylated cholic acid protects against the progression of metabolic dysfunction-associated liver disease. Intriguingly, its protective mechanism does not involve traditional BA signaling pathways but is instead linked to the proliferation of the commensal microbe Akkermansia muciniphila.


Assuntos
Akkermansia , Ácidos e Sais Biliares , Publicações Periódicas como Assunto , Animais , Humanos , Camundongos , Akkermansia/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/microbiologia , Verrucomicrobia/metabolismo
13.
Mol Syst Biol ; 20(6): 596-625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745106

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.


Assuntos
Akkermansia , Citrobacter rodentium , Microbioma Gastrointestinal , Animais , Camundongos , Citrobacter rodentium/patogenicidade , Humanos , Suscetibilidade a Doenças , Fibras na Dieta/metabolismo , Vida Livre de Germes , Dieta , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verrucomicrobia/genética , Infecções por Enterobacteriaceae/microbiologia , Colo/microbiologia , Camundongos Endogâmicos C57BL
14.
Gut Microbes ; 16(1): 2338947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717824

RESUMO

The gut microbiota has coevolved with the host for hundreds of millions of years, playing a beneficial role in host health. Human parasitic helminths are widespread and pose a pervasive global public health issue. Although Type 2 immunity provides partial resistance to helminth infections, the composition of the gut microbiota can change correspondingly. Therefore, it raises the question of what role the gut microbiota plays during helminth infection. Akkermansia muciniphila has emerged as a notable representative of beneficial microorganisms in the gut microbiota. Recent studies indicate that A. muciniphila is not merely associated with helminth infection but is also causally linked to infection. Here, we provide an overview of the crosstalk between A. muciniphila and enteric helminth infection. Our goal is to enhance our understanding of the interplay among A. muciniphila, helminths, and their hosts while also exploring the potential underlying mechanisms.


Assuntos
Akkermansia , Microbioma Gastrointestinal , Animais , Humanos , Helmintíase/imunologia , Helmintos/imunologia , Helmintos/genética , Verrucomicrobia/genética , Verrucomicrobia/imunologia
15.
Nat Commun ; 15(1): 2983, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582860

RESUMO

Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/ß-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/ß-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.


Assuntos
Verrucomicrobia , beta Catenina , Masculino , Camundongos , Animais , beta Catenina/metabolismo , Verrucomicrobia/metabolismo , Intestinos , Caderinas/metabolismo , Akkermansia
16.
Front Immunol ; 15: 1370658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571945

RESUMO

Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Verrucomicrobia/metabolismo , Intestinos , Obesidade , Akkermansia
17.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609025

RESUMO

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Assuntos
Di-Hidroxifenilalanina , Mytilus edulis , Animais , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Mytilus edulis/genética , Mytilus edulis/química , Mytilus edulis/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/química , Proteínas/genética , Proteínas/química , Proteínas/isolamento & purificação , Hidroxilação , Escherichia coli/genética , Escherichia coli/metabolismo
18.
Food Funct ; 15(9): 4763-4772, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38590256

RESUMO

Inulins, galacto-oligosaccharides (GOS) and polyphenols are considered to stimulate the growth of Akkermansia muciniphila (A. muciniphila) in the gut. We performed a meta-analysis of six microbiome studies (821 stool samples from 451 participants) to assess the effects of inulin, GOS, and polyphenols on the abundance of A. muciniphila in the gut. The intervention of GOS increased the relative abundance of A. muciniphila in healthy participants. Additionally, metabolic pathways associated with carbohydrate metabolism and short-chain fatty acid release were enriched following the GOS intervention. Furthermore, after the GOS intervention, the coexisting microbial communities of A. muciniphila, such as Eubacterium hallii and Bacteroides, exhibited an enhanced correlation with A. muciniphila. In conclusion, our findings suggest that GOS may promote the growth of A. muciniphila in the gut by modulating the gut microbiota composition.


Assuntos
Akkermansia , Microbioma Gastrointestinal , Inulina , Oligossacarídeos , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Polifenóis/farmacologia , Inulina/farmacologia , Humanos , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Fezes/microbiologia , Verrucomicrobia , Prebióticos , Galactose
19.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653239

RESUMO

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Assuntos
Akkermansia , Bacteroides , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Humanos , Masculino , Camundongos , Akkermansia/metabolismo , Bacteroides/metabolismo , beta-Lactamases/metabolismo , Ácidos e Sais Biliares/metabolismo , Vias Biossintéticas/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Verrucomicrobia/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia
20.
Microbiol Res ; 283: 127677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490028

RESUMO

Akkermansia muciniphila, a bacterium found in the human microbiota, has gained interest due to its potential health benefits. Previous studies have linked its absence to inflammatory disorders, while also suggesting its role in maintaining a healthy gut barrier. However, there is limited information on its specific effects on the immune system. Therefore, the aim of this research was to analyze the in vitro response triggered by A. muciniphila employing RAW 264.7 macrophages. The study focused on investigating the production of cytokines and nitric oxide, along with evaluating the expression of inflammatory surface cellular markers. Additionally, we assessed its potential to protect against intestinal infections, using Salmonella enterica serovar Enteritidis as a model. Our findings reveal a modulation effect of A. muciniphila with pro-inflammatory features, including the release of pro-inflammatory cytokines and upregulation of CD40 and CD80 surface markers, in contrast with previous reported data. Importantly, A. muciniphila could protect against Salmonella infection by promoting macrophage activation, appearing as a promising probiotic candidate for the control of intestinal infections.


Assuntos
Probióticos , Verrucomicrobia , Humanos , Verrucomicrobia/metabolismo , Citocinas , Akkermansia , Probióticos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA