Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Int J Biol Macromol ; 276(Pt 1): 133800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996895

RESUMO

The use of beneficial microorganisms and polysaccharides for the biocontrol of plant diseases currently represents a promising tool for the management of soil-borne pathogens. Despite advancements, enhancing the efficacy and sustainability of these biocontrol methods, particularly in complex soil environments, remains a challenge. Thus, we investigated the potential of four PGPR strains encapsulated in natural alginate extracted from a brown seaweed Bifurcaria bifurcata to evaluate its biocontrol capacities against Verticillium wilt of tomato, ensuring optimal performance through a synergistic effect and innovative bacterial release. Our research demonstrated that the application of PGPR and alginate reduced disease severity and mortality rate and increased the natural defenses of tomato. Results showed that supplying alginate or the PGPR consortium at the root level s stimulates phenylalanine ammonia-lyase activity (the key enzyme of the phenylpropanoid metabolism) and the accumulation of phenolic compounds and lignin in leaves and roots. Treatment with PGPR encapsulated in alginate beads showed the best biocontrol efficiency and was accompanied by a synergistic effect reflecting a rapid, intense, and systemic induction of defense mechanisms known for their effectiveness in inducing resistance in tomato. These promising results suggest that such bioformulations could lead to innovative agricultural practices for sustainable plant protection against pathogens.


Assuntos
Alginatos , Doenças das Plantas , Solanum lycopersicum , Verticillium , Solanum lycopersicum/microbiologia , Alginatos/química , Alginatos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Verticillium/patogenicidade , Verticillium/efeitos dos fármacos , Alga Marinha/microbiologia , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/microbiologia , Agentes de Controle Biológico/farmacologia
2.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829344

RESUMO

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Assuntos
Cálcio , Resistência à Doença , Gossypium , Doenças das Plantas , Proteínas de Plantas , Gossypium/microbiologia , Gossypium/genética , Gossypium/metabolismo , Gossypium/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Calmodulina/metabolismo , Calmodulina/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Plantas Geneticamente Modificadas , Verticillium/fisiologia , Verticillium/patogenicidade
3.
Genes Genomics ; 46(8): 967-975, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879677

RESUMO

BACKGROUND: Verticillium wilt, causes mainly by the soilborne pathogen Verticillium dahliae, is a devastated vascular disease resulting in huge financial losses in cotton, so research on improving V. dahliae stress tolerance in cotton is the utmost importance. Calcium as the second messenger acts as a crucial role in plant innate immunity. Cytosolic Ca2+during the pathogen infection is a significant increase in plant immune responses. Calcineurin B-like (CBL) proteins are widely known calcium sensors that regulate abiotic stress responses. However, the role of cotton CBLs in response to V. dahliae stress remains unclear. OBJECTIVE: To discover and utilize the gene to Verticillium wilt resistance and defense response mechanism of cotton. METHODS: Through screening the gene to Verticillium wilt resistance in cotton, four GhCBL3 copies were obtained from the current common cotton genome sequences. The protein domain and phylogenetic analyses of GhCBL3 were performed using NCBI Blast, DNAMAN, and MotifScan programs. Real-time RT-PCR was used to detect the expression of GhCBL3 gene in cotton seedlings under various stress treatments. The expression construct including GhCBL3 cDNA was transduced into Agrobacterium tumefaciens (GV3101) by heat shock method and transformed into cotton plants by Virus-Induced Gene Silencing (VIGS) method. The results of silencing of GhCBl3 on ROS accumulation and plant disease resistance in cotton plants were assessed. RESULTS: A member of calcineurin B-like proteins (defined as GhCBL3) in cotton was obtained. The expression of GhCBL3 was significantly induced and raised by various stressors, including dahliae, jasmonic acid (JA) and H2O2 stresses. Knockdown GhCBL3 in cotton by Virus-Induced Gene Silencing analysis enhanced Verticillium wilt tolerance and changed the occurrence of reactive oxygen species. Some disease-resistant genes were increased in GhCBL3-silencing cotton lines. CONCLUSION: GhCBL3 may function on regulating the Verticillium dahliae stress response of plants.


Assuntos
Resistência à Doença , Gossypium , Doenças das Plantas , Proteínas de Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/metabolismo , Gossypium/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Ascomicetos/patogenicidade , Calcineurina/metabolismo , Calcineurina/genética , Verticillium/patogenicidade , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
4.
Trends Plant Sci ; 29(7): 724-726, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431495

RESUMO

Plant diseases caused by microbial pathogens significantly reduce agriculture productivity and worsen food insecurity. Recently, Qiu et al. revealed that polyethyleneimine (PEI)-coated MXene quantum dots (QDs) improve tolerance in cotton seedlings against Verticillium wilt disease by maintaining oxidative system homeostasis. This finding shows how customized QDs can be used to enhance crop disease resistance.


Assuntos
Doenças das Plantas , Pontos Quânticos , Doenças das Plantas/microbiologia , Resistência à Doença , Verticillium/fisiologia , Verticillium/patogenicidade , Gossypium/microbiologia
5.
BMC Plant Biol ; 23(1): 141, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915047

RESUMO

BACKGROUND: The WRKY transcription factors play significant roles in plant growth, development, and defense responses. However, in cotton, the molecular mechanism of most WRKY proteins and their involvement in Verticillium wilt tolerance are not well understood. RESULTS: GhWRKY70 is greatly up-regulated in cotton by Verticillium dahliae. Subcellular localization suggests that GhWRKY70 is only located in the nucleus. Transcriptional activation of GhWRKY70 further demonstrates that GhWRKY70 function as a transcriptional activator. Transgenic Arabidopsis plants overexpressing GhWRKY70 exhibited better growth performance and higher lignin content, antioxidant enzyme activities and jasmonic acid (JA) levels than wild-type plants after infection with V. dahliae. In addition, the transgenic Arabidopsis resulted in an enhanced expression level of AtAOS1, a gene related to JA synthesis, further leading to a higher JA accumulation compared to the wild type. However, the disease index (DI) values of the VIGS-treated cotton plants with TRV:WRKY70 were also significantly higher than those of the VIGS-treated cotton plants with TRV:00. The chlorophyll and lignin contents of TRV:WRKY70 plants were significantly lower than those of TRV:00 plants. GhAOS1 expression and JA abundance in TRV:WRKY70 plants were decreased. The GhWRKY70 protein was confirmed to bind to the W-box element in the promoter region of GhAOS by yeast one-hybrid assay and transient expression. CONCLUSION: These results indicate that the GhWRKY70 transcription factor is a positive regulator in Verticillium wilt tolerance of cotton, and may promote the production of JA via regulation of GhAOS1 expression.


Assuntos
Resistência à Doença , Gossypium , Doenças das Plantas , Fatores de Transcrição , Verticillium , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Lignina/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Verticillium/patogenicidade , Plantas Geneticamente Modificadas
6.
Braz. j. biol ; 83: 1-8, 2023. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468837

RESUMO

Endophytic bacteria serve key roles in the maintenance of plant health and growth. Few studies to date, however, have explored the antagonistic and plant growth-promoting (PGP) properties of Prunus cerasifera endophytes. To that end, we isolated endophytic bacteria from P. cerasifera tissue samples and used a dual culture plate assay to screen these microbes for antagonistic activity against Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum, and F. moniliforme. Of the 36 strains of isolated bacteria, four (strains P1, P10, P16, and P20) exhibited antagonistic effects against all five model pathogens, and the P10 strain exhibited the strongest antagonistic to five pathogens. This P10 strain was then characterized in-depth via phenotypic assessments, physiological analyses, and 16s rDNA sequencing, revealing it to be a strain of Bacillus subtilis. Application of a P10 cell suspension (1×108 CFU/mL) significantly enhanced the seed germination and seedling growth of tomato in a greenhouse setting. This P10 strain further significantly suppressed tomato Verticillium wilt with much lower disease incidence and disease index scores being observed following P10 treatment relative to untreated plants in pot-based experiments. Tomato plants that had been treated with strain P10 also enhanced defense-related enzymes, peroxidase, superoxide dismutase, and catalase activity upon V. dahliae challenge relative to plants that had not been treated with this endophytic bacterium. The results revealed that the P10 bacterial strain has potential value as a biocontrol agent for use in the prevention of tomato Verticillium wilt.


As bactérias endofíticas desempenham papel fundamental na manutenção da saúde e do crescimento das plantas. Poucos estudos até o momento, no entanto, exploraram as propriedades antagônicas e promotoras de crescimento de plantas (PGP) de endófitos de Prunus cerasifera. Para esse fim, isolamos bactérias endofíticas de amostras de tecido de P. cerasifera e usamos um ensaio de placa de cultura dupla para rastrear esses micróbios quanto à atividade antagonista contra Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum e F. moniliforme. Das 36 cepas de bactérias isoladas, quatro (cepas P1, P10, P16 e P20) exibiram efeitos antagônicos contra todos os cinco patógenos modelo, e a cepa P10 exibiu o antagonista mais forte para cinco patógenos. Essa cepa P10 foi então caracterizada em profundidade por meio de avaliações fenotípicas, análises fisiológicas e sequenciamento de rDNA 16s, revelando ser uma cepa de Bacillus subtilis. A aplicação de uma suspensão de células P10 (1 × 108 UFC / mL) aumentou significativamente a germinação das sementes e o crescimento das mudas de tomate em casa de vegetação. Essa cepa P10 suprimiu ainda mais a murcha de Verticillium do tomate com incidência de doença muito menor e pontuações de índice de doença sendo observadas após o tratamento com P10 em relação a plantas não tratadas em experimentos baseados em vasos. As plantas de tomate que foram tratadas com a cepa P10 também aumentaram as enzimas relacionadas à defesa, peroxidase, superóxido dismutase e atividade da catalase após o desafio de V. dahliae em relação às plantas que não foram tratadas com essa bactéria endofítica. Os resultados revelaram que a cepa bacteriana P10 tem valor potencial como agente de biocontrole para uso na prevenção da murcha de Verticillium em tomate.


Assuntos
Bacillus subtilis/fisiologia , Bacillus subtilis/genética , Endófitos/isolamento & purificação , Fusarium/patogenicidade , Prunus/microbiologia , Verticillium/patogenicidade
7.
Gene ; 822: 146336, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182675

RESUMO

Verticillium wilt, primarily caused by the fungal pathogen Verticillium dahliae, is a serious disease in cotton. Arabinogalactan proteins (AGPs), a class of hydroxyproline-rich glycoproteins, have been widely implicated in plant growth and environmental adaptation. The purpose of this study is to identify and characterize AGP members in cotton plants and explore their roles in responding to environmental stressors. In total, 65 GhAGP members were identified in upland cotton (Gossypium hirsutum), along with 43, 35, and 37 AGP members that were also identified in G. barbadense, G. arboreum, and G. raimondii, respectively. According to gene structure and protein domains analysis, GhAGP genes in upland cotton are highly conserved. Meanwhile, tandem duplication events have occurred frequently throughout cotton's evolutionary history. Expression analysis showed that GhAGP genes were widely expressed during growth and development and in response to abiotic stressors. Many cis-elements related to hormonal responses and environmental stressors were detected in GhAGP promoter regions. GhAGP genes participate in responding to cold, drought, and salt stress, and were sensitive to ET signaling. Furthermore, the expression level of GhAGP15 was elevated during V. dahliae infection and resistance against V. dahliae in upland cotton was significantly weakened by silencing GhAGP15 using a virus-induced gene silencing (VIGS) approach. Our results further suggest that the function of GhAGP15 in V. dahliae resistance might be involved in regulation of the JA, SA, and reactive oxygen species (ROS) pathways. The comprehensive analysis of AGP genes in cotton performed in this study provides a basic framework for further functional research of these genes.


Assuntos
Resistência à Doença , Perfilação da Expressão Gênica/métodos , Gossypium/crescimento & desenvolvimento , Mucoproteínas/genética , Verticillium/patogenicidade , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiologia , Mucoproteínas/química , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Domínios Proteicos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia , Análise de Sequência de DNA , Estresse Fisiológico , Regulação para Cima
8.
Microbiol Res ; 257: 126962, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35042052

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. However, these functions have not been assessed in Verticillium dahliae, a soil-borne fungal pathogen that causes devastating wilt diseases in many crops. The discovery and identity of novel lncRNAs and their association with virulence may contribute to an increased understanding of the regulation of virulence in V. dahliae. Here, we identified a total of 352 lncRNAs in V. dahliae. The lncRNAs were transcribed from all V. dahliae chromosomes, typically with shorter open reading frames, lower GC content, and fewer exons than protein-coding genes. In addition, 308 protein-coding genes located within 10 kb upstream and 10 kb downstream of lncRNAs were identified as neighboring genes, and which were considered as potential targets of lncRNA. These neighboring genes encode products involved in development, stress responses, and pathogenicity of V. dahliae, such as transcription factors (TF), kinase, and members of the secretome. Furthermore, 47 lncRNAs were significantly differentially expressed in V. dahliae following inoculation of susceptible cotton (Gossyoiumhisutum) cultivar Junmian No.1, suggesting that lncRNAs may be involved in the regulation of virulence in V. dahliae. Moreover, correlations in expression patterns between lncRNA and their neighboring genes were detected. Expression of lncRNA012077 and its neighboring gene was up-regulated 6 h following inoculation of cotton, while the expression of lncRNA007722 was down-regulated at 6 h but up-regulated at 24 h, in a pattern opposite to that of its neighboring gene. Overexpression of lncRNA012077 in wild-type strain (Vd991) enhanced its virulence on cotton while overexpression of lncRNA009491 reduced virulence. Identification of novel lncRNAs and their association with virulence may provide new targets for disease control.


Assuntos
Gossypium/microbiologia , Doenças das Plantas/microbiologia , RNA Longo não Codificante , Verticillium , Resistência à Doença , RNA Longo não Codificante/genética , Verticillium/genética , Verticillium/patogenicidade
9.
Nat Commun ; 12(1): 6426, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741039

RESUMO

Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/virologia , Fusarium/patogenicidade , Arabidopsis/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Verticillium/patogenicidade
10.
Sci Rep ; 11(1): 20586, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663884

RESUMO

Worldwide, Verticillium wilt is among the major harmful diseases in cotton production, causing substantial reduction in yields. While this disease has been extensively researched at the molecular level of the pathogen, the molecular basis of V. dahliae host response association is yet to be thoroughly investigated. In this study, RNA-seq analysis was carried out on V. dahliae infected two Gossypium hirsutum L. cultivars, Xinluzao-36 (susceptible) and Zhongzhimian-2 (disease resistant) for 0 h, 24 h, 72 h and 120 h time intervals. Statistical analysis revealed that V. dahliae infection elicited differentially expressed gene responses in the two cotton varieties, but more intensely in the susceptible cultivar than in the resistant cultivars. Data analysis revealed 4241 differentially expressed genes (DEGs) in the LT variety across the three treatment timepoints whereas 7657 in differentially expressed genes (DEGs) in the Vd592 variety across the three treatment timepoints. Six genes were randomly selected for qPCR validation of the RNA-Seq data. Numerous genes encompassed in disease resistance and defense mechanisms were identified. Further, RNA-Seq dataset was utilized in construction of the weighted gene co-expression network and 11 hub genes were identified, that encode for different proteins associated with lignin and immune response, Auxin response factor, cell wall and vascular development, microtubule, Ascorbate transporter, Serine/threonine kinase and Immunity and drought were identified. This significant research will aid in advancing crucial knowledge on virus-host interactions and identify key genes intricate in G. hirsutum L. resistance to V. dahliae infection.


Assuntos
Ascomicetos/genética , Gossypium/genética , Ascomicetos/patogenicidade , Resistência à Doença/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , RNA-Seq , Transcriptoma/genética , Verticillium/genética , Verticillium/patogenicidade
11.
Genomics ; 113(6): 3872-3880, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34563615

RESUMO

We combined traditional mRNA-seq and RNC-seq together to reveal post-transcriptional regulation events impacting gene expression and interactions between the serious fungal pathogen Verticillium dahliae and a susceptible host, Gossypium hirsutum TM-1. After screening the differentially expressed and translated genes, V. dahliae infection was observed to influence gene transcription and translation in its host. Interestingly, the asparagine synthase (ASN1) gene transcripts increased significantly with the increase of infection time, while the rate of ASN1 protein accumulation in host TM-1 was distinctly lower than that in resistant hosts. We knocked down the ASN1 gene in resistant plants (ZZM2), and found that Verticillium-resistance was significantly reduced upon knockdown of ASN1. Our study revealed both transcriptional and post-transcriptional regulation of gene expression in TM-1 cotton plants infected by V. dahliae, and showed that ASN1 functions in the V. dahliae resistance process. These insights support breeding of disease resistance in cotton.


Assuntos
Resistência à Doença , Gossypium , Doenças das Plantas , Verticillium , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/microbiologia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Ribossomos , Verticillium/patogenicidade
12.
Mol Plant Pathol ; 22(12): 1656-1667, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34515397

RESUMO

Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.


Assuntos
Fatores de Despolimerização de Actina/genética , Resistência à Doença , Gossypium , Doenças das Plantas/microbiologia , Verticillium , Actinas , Ascomicetos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/patogenicidade
13.
Mol Plant Pathol ; 22(9): 1092-1108, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245085

RESUMO

The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following V. dahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more O2- and less H2 O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of V. dahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in V. dahliae.


Assuntos
Gossypium/microbiologia , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Verticillium , Verticillium/enzimologia , Verticillium/patogenicidade , Virulência , Zinco
14.
Mol Plant Pathol ; 22(9): 1041-1056, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34169624

RESUMO

Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.


Assuntos
Resistência à Doença , Ácidos Graxos Dessaturases , Gossypium/genética , Doenças das Plantas/microbiologia , Verticillium , Proteína de Transporte de Acila , Resistência à Doença/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Gossypium/microbiologia , Oxigenases de Função Mista , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Verticillium/patogenicidade
15.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921761

RESUMO

RNA interference is an evolutionary conserved mechanism by which organisms regulate the expression of genes in a sequence-specific manner to modulate defense responses against various abiotic or biotic stresses. Hops are grown for their use in brewing and, in recent years, for the pharmaceutical industry. Hop production is threatened by many phytopathogens, of which Verticillium, the causal agent of Verticillium wilt, is a major contributor to yield losses. In the present study, we performed identification, characterization, phylogenetic, and expression analyses of three Argonaute, two Dicer-like, and two RNA-dependent RNA polymerase genes in the susceptible hop cultivar Celeia and the resistant cultivar Wye Target after infection with Verticillium nonalfalfae. Phylogeny results showed clustering of hop RNAi proteins with their orthologues from the closely related species Cannabis sativa, Morus notabilis and Ziziphus jujuba which form a common cluster with species of the Rosaceae family. Expression analysis revealed downregulation of argonaute 2 in both cultivars on the third day post-inoculation, which may result in reduced AGO2-siRNA-mediated posttranscriptional gene silencing. Both cultivars may also repress ta-siRNA biogenesis at different dpi, as we observed downregulation of argonaute 7 in the susceptible cultivar on day 1 and downregulation of RDR6 in the resistant cultivar on day 3 after inoculation.


Assuntos
Humulus/genética , Humulus/microbiologia , MicroRNAs/metabolismo , Verticillium/patogenicidade , Cannabis/genética , Cannabis/metabolismo , Cannabis/microbiologia , Interações Hospedeiro-Patógeno , Humulus/metabolismo , MicroRNAs/genética , Filogenia , Interferência de RNA , Ziziphus/genética , Ziziphus/metabolismo , Ziziphus/microbiologia
16.
J Hazard Mater ; 404(Pt B): 124029, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068990

RESUMO

Verticillium wilt caused by Verticillium dahliae Kleb. is a major disease in cotton. We found that pectin lyase can enhance cotton resistance to Verticillium wilt and induce cell apoptosis of V. dahliae strain Vd080. The biocontrol effect of pectin lyase on Vd080 reached 61.9%. Pectin lyase increased ERG4 (Delta (24 (24 (1)))-sterol reductase) expression, the ergosterol content of the cell membrane, the collapse of mitochondrial membrane potential, hydrogen peroxide content, metacaspase activity, and Ca2+ content in the cytoplasm in the Vd080 strain and induced endoplasmic reticulum (ER) stress. Pectin lyase also increased the expression levels of the ER molecular chaperone glucose regulating protein Grp78 (BiP), protein disulfide isomerase (PDI) and calnexin (CNX), reduced the expression levels of the protein Hsp40. When the PDI and BiP genes of Vd080 were knocked out, the mutants △BiP and △PDI had reduced sensitivity to pectin lyase. In the absence of external stress, ER stress appeared in mutant △BiP cells. Pectin lyase affects the ergosterol content of the Vd080 cell membrane, which causes ER stress and increases the level of BiP to induce Vd080 cell apoptosis. These results demonstrate that pectin lyase can be used to control Verticillium wilt in cotton.


Assuntos
Apoptose , Gossypium/enzimologia , Doenças das Plantas/microbiologia , Polissacarídeo-Liases , Verticillium , Ascomicetos , Resistência à Doença , Gossypium/genética , Gossypium/microbiologia , Verticillium/patogenicidade
17.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317090

RESUMO

Defensins are small and rather ubiquitous cysteine-rich anti-microbial peptides. These proteins may act against pathogenic microorganisms either directly (by binding and disrupting membranes) or indirectly (as signaling molecules that participate in the organization of the cellular defense). Even though defensins are widespread across eukaryotes, still, extensive nucleotide and amino acid dissimilarities hamper the elucidation of their response to stimuli and mode of function. In the current study, we screened the Solanum lycopersicum genome for the identification of defensin genes, predicted the relating protein structures, and further studied their transcriptional responses to biotic (Verticillium dahliae, Meloidogyne javanica, Cucumber Mosaic Virus, and Potato Virus Y infections) and abiotic (cold stress) stimuli. Tomato defensin sequences were classified into two groups (C8 and C12). Our data indicate that the transcription of defensin coding genes primarily depends on the specific pathogen recognition patterns of V. dahliae and M. javanica. The immunodetection of plant defensin 1 protein was achieved only in the roots of plants inoculated with V. dahliae. In contrast, the almost null effects of viral infections and cold stress, and the failure to substantially induce the gene transcription suggest that these factors are probably not primarily targeted by the tomato defensin network.


Assuntos
Defensinas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Animais , Resposta ao Choque Frio , Defensinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Proteínas de Plantas/metabolismo , Ativação Transcricional , Tylenchoidea/patogenicidade , Verticillium/patogenicidade
18.
PLoS One ; 15(8): e0236796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780734

RESUMO

It is well-known that different plant species, and even plant varieties, promote different assemblages of the microbial communities associated with them. Here, we investigate how microbial communities (bacteria and fungi) undergo changes within the influence of woody plants (two olive cultivars, one tolerant and another susceptible to the soilborne fungal pathogen Verticillium dahliae, plus wild Holm oak) grown in the same soil but with different management (agricultural versus native). By the use of metabarcoding sequencing we determined that the native Holm oak trees rhizosphere bacterial communities were different from its bulk soil, with differences in some genera like Gp4, Gp6 and Solirubrobacter. Moreover, the agricultural management used in the olive orchard led to belowground microbiota differences with respect to the natural conditions both in bulk soils and rhizospheres. Indeed, Gemmatimonas and Fusarium were more abundant in olive orchard soils. However, agricultural management removed the differences in the microbial communities between the two olive cultivars, and these differences were minor respect to the olive bulk soil. According to our results, and at least under the agronomical conditions here examined, the composition and structure of the rhizospheric microbial communities do not seem to play a major role in olive tolerance to V. dahliae.


Assuntos
Microbiota/genética , Olea/microbiologia , Quercus/microbiologia , Microbiologia do Solo , DNA Fúngico/química , DNA Fúngico/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/microbiologia , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rizosfera , Análise de Sequência de DNA , Verticillium/genética , Verticillium/patogenicidade
19.
PLoS Pathog ; 16(4): e1008481, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32298394

RESUMO

Reactive oxygen species (ROS) production is one of the earliest responses when plants percept pathogens and acts as antimicrobials to block pathogen entry. However, whether and how pathogens tolerate ROS stress remains elusive. Here, we report the chromatin remodeling in Verticillium dahliae, a soil-borne pathogenic fungus that causes vascular wilts of a wide range of plants, facilitates the DNA damage repair in response to plant ROS stress. We identified VdDpb4, encoding a histone-fold protein of the ISW2 chromatin remodeling complex in V. dahliae, is a virulence gene. The reduced virulence in wild type Arabidopsis plants arising from VdDpb4 deletion was impaired in the rbohd mutant plants that did not produce ROS. Further characterization of VdDpb4 and its interacting protein, VdIsw2, an ATP-dependent chromatin-remodeling factor, we show that while the depletion of VdIsw2 led to the decondensing of chromatin, the depletion of VdDpb4 resulted in a more compact chromatin structure and affected the VdIsw2-dependent transcriptional effect on gene expression, including genes involved in DNA damage repair. A knockout mutant of either VdDpb4 or VdIsw2 reduced the efficiency of DNA repair in the presence of DNA-damaging agents and virulence during plant infection. Together, our data demonstrate that VdDpb4 and VdIsw2 play roles in maintaining chromatin structure for positioning nucleosomes and transcription regulation, including genes involved in DNA repair in response to ROS stress during development and plant infection.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Verticillium/genética , Arabidopsis/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Verticillium/patogenicidade , Virulência
20.
Mol Plant Microbe Interact ; 33(6): 825-841, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32154756

RESUMO

The soil-borne pathogen Verticillium dahliae has a worldwide distribution and a plethora of hosts of agronomic value. Molecular analysis of virulence processes can identify targets for disease control. In this work, we compared the global gene transcription profile of random T-DNA insertion mutant strain D-10-8F, which exhibits reduced virulence and alterations in microsclerotium formation and polar growth, with that of the wild-type strain. Three genes identified as differentially expressed were selected for functional characterization. To produce deletion mutants, we developed an updated version of one-step construction of Agrobacterium-recombination-ready plasmids (OSCAR) that included the negative selection marker HSVtk (herpes simplex virus thymidine kinase gene) to prevent ectopic integration of the deletion constructs. Deletion of VdRGS1 (VDAG_00683), encoding a regulator of G protein signaling (RGS) protein and highly upregulated in the wild type versus D-10-8F, resulted in phenotypic alterations in development and virulence that were indistinguishable from those of the random T-DNA insertion mutant. In contrast, deletion of the other two genes selected, vrg1 (VDAG_07039) and vvs1 (VDAG_01858), showed that they do not play major roles in morphogenesis or virulence in V. dahliae. Taken together the results presented here on the transcriptomic analysis and phenotypic characterization of D-10-8F and ∆VdRGS1 strains provide evidence that variations in G protein signaling control the progression of the disease cycle in V. dahliae. We propose that G protein-mediated signals induce the expression of multiple virulence factors during biotrophic growth, whereas massive production of microsclerotia at late stages of infection requires repression of G protein signaling via upregulation of VdRGS1 activity.


Assuntos
Doenças das Plantas/microbiologia , Transcriptoma , Verticillium/genética , Verticillium/patogenicidade , DNA Bacteriano , Proteínas Fúngicas , Deleção de Genes , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA