Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.152
Filtrar
1.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658373

RESUMO

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Assuntos
Córtex Pré-Frontal , Células Piramidais , Células Piramidais/fisiologia , Células Piramidais/citologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Animais , Ratos , Núcleo Mediodorsal do Tálamo/fisiologia , Núcleo Mediodorsal do Tálamo/citologia , Masculino , Fenômenos Eletrofisiológicos , Vias Neurais/fisiologia , Vias Neurais/citologia , Aprendizado de Máquina , Ratos Sprague-Dawley , Técnicas de Patch-Clamp
2.
Nature ; 624(7991): 355-365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092919

RESUMO

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Assuntos
Encéfalo , Epigenômica , Vias Neurais , Neurônios , Animais , Camundongos , Tonsila do Cerebelo , Encéfalo/citologia , Encéfalo/metabolismo , Sequência Consenso , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Hipotálamo/citologia , Mesencéfalo/citologia , Vias Neurais/citologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sequências Reguladoras de Ácido Nucleico , Rombencéfalo/citologia , Análise de Célula Única , Tálamo/citologia , Fatores de Transcrição/metabolismo
3.
Nature ; 624(7990): 130-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993711

RESUMO

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Assuntos
Regulação do Apetite , Tronco Encefálico , Ingestão de Alimentos , Retroalimentação Fisiológica , Alimentos , Saciação , Estômago , Regulação do Apetite/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Saciação/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estômago/fisiologia , Paladar/fisiologia , Fatores de Tempo , Animais , Camundongos
4.
Science ; 378(6626): 1336-1343, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36548429

RESUMO

The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain. By contrast, layer 5 M1 neurons connect with specific cell populations in zona incerta and periaqueductal gray to suppress sensory hypersensitivity without altering pain affect. Thus, the M1 employs distinct, layer-specific pathways to attune sensory and aversive-emotional components of neuropathic pain, which can be exploited for purposes of pain relief.


Assuntos
Córtex Motor , Vias Neurais , Neuralgia , Córtex Motor/citologia , Córtex Motor/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neuralgia/fisiopatologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Tálamo/citologia , Tálamo/fisiologia , Animais , Camundongos
5.
Nature ; 607(7919): 521-526, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794480

RESUMO

The direct and indirect pathways of the basal ganglia are classically thought to promote and suppress action, respectively1. However, the observed co-activation of striatal direct and indirect medium spiny neurons2 (dMSNs and iMSNs, respectively) has challenged this view. Here we study these circuits in mice performing an interval categorization task that requires a series of self-initiated and cued actions and, critically, a sustained period of dynamic action suppression. Although movement produced the co-activation of iMSNs and dMSNs in the sensorimotor, dorsolateral striatum (DLS), fibre photometry and photo-identified electrophysiological recordings revealed signatures of functional opponency between the two pathways during action suppression. Notably, optogenetic inhibition showed that DLS circuits were largely engaged to suppress-and not promote-action. Specifically, iMSNs on a given hemisphere were dynamically engaged to suppress tempting contralateral action. To understand how such regionally specific circuit function arose, we constructed a computational reinforcement learning model that reproduced key features of behaviour, neural activity and optogenetic inhibition. The model predicted that parallel striatal circuits outside the DLS learned the action-promoting functions, generating the temptation to act. Consistent with this, optogenetic inhibition experiments revealed that dMSNs in the associative, dorsomedial striatum, in contrast to those in the DLS, promote contralateral actions. These data highlight how opponent interactions between multiple circuit- and region-specific basal ganglia processes can lead to behavioural control, and establish a critical role for the sensorimotor indirect pathway in the proactive suppression of tempting actions.


Assuntos
Corpo Estriado , Modelos Neurológicos , Inibição Neural , Vias Neurais , Neurônios , Animais , Simulação por Computador , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Camundongos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Optogenética
6.
J Neurosci ; 42(6): 1068-1089, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34903572

RESUMO

The reuniens nucleus (RE) is situated at the most ventral position of the midline thalamus. In rats and mice RE is distinguished by bidirectional connections with the hippocampus and medial prefrontal cortex (mPFC) and a role in memory and cognition. In primates, many foundational questions pertaining to RE remain unresolved. We addressed these issues by investigating the composition of the rhesus monkey RE in both sexes by labeling for GABA, a marker of inhibitory neurons, and for the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR), which label thalamic excitatory neurons that project to cortex. As in rats and mice, the macaque RE was mostly populated by CB and CR neurons, characteristic of matrix-dominant nuclei, and had bidirectional connections with hippocampus and mPFC area 25 (A25). Unlike rodents, we found GABAergic neurons in the monkey RE and a sparser but consistent population of core-associated thalamocortical PV neurons. RE had stronger connections with the basal amygdalar complex than in rats or mice. Amygdalar terminations were enriched with mitochondria and frequently formed successive synapses with the same postsynaptic structures, suggesting an active and robust pathway to RE. Significantly, hippocampal pathways formed multisynaptic complexes that uniquely involved excitatory projection neurons and dendrites of local inhibitory neurons in RE, extending this synaptic principle beyond sensory to high-order thalamic nuclei. Convergent pathways from hippocampus, A25, and amygdala in RE position it to flexibly coordinate activity for memory, cognition, and emotional context, which are disrupted in several psychiatric and neurologic diseases in humans.SIGNIFICANCE STATEMENT The primate RE is a central node for memory and cognition through connections with the hippocampus and mPFC. As in rats or mice, the primate RE is a matrix-dominant thalamic nucleus, suggesting signal traffic to the upper cortical layers. Unlike rats or mice, the primate RE contains inhibitory neurons, synaptic specializations with the hippocampal pathway, and robust connections with the amygdala, suggesting unique adaptations. Convergence of hippocampal, mPFC, and amygdalar pathways in RE may help unravel a circuit basis for binding diverse signals for conscious flexible behaviors and the synthesis of memory with affective significance in primates, whereas disruption of distinct circuit nodes may occur in psychiatric disorders in humans.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Axônios/ultraestrutura , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Macaca mulatta , Masculino , Núcleos da Linha Média do Tálamo/citologia , Vias Neurais/citologia
7.
J Neurosci ; 42(5): 749-761, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34887319

RESUMO

Neuronal remodeling after brain injury is essential for functional recovery. After unilateral cortical lesion, axons from the intact cortex ectopically project to the denervated midbrain, but the molecular mechanisms remain largely unknown. To address this issue, we examined gene expression profiles in denervated and intact mouse midbrains after hemispherectomy at early developmental stages using mice of either sex, when ectopic contralateral projection occurs robustly. The analysis showed that various axon growth-related genes were upregulated in the denervated midbrain, and most of these genes are reportedly expressed by glial cells. To identify the underlying molecules, the receptors for candidate upregulated molecules were knocked out in layer 5 projection neurons in the intact cortex, using the CRISPR/Cas9-mediated method, and axonal projection from the knocked-out cortical neurons was examined after hemispherectomy. We found that the ectopic projection was significantly reduced when integrin subunit ß three or neurotrophic receptor tyrosine kinase 2 (also known as TrkB) was knocked out. Overall, the present study suggests that denervated midbrain-derived glial factors contribute to lesion-induced remodeling of the cortico-mesencephalic projection via these receptors.SIGNIFICANCE STATEMENT After brain injury, compensatory neural circuits are established that contribute to functional recovery. However, little is known about the intrinsic mechanism that underlies the injury-induced remodeling. We found that after unilateral cortical ablation expression of axon-growth promoting factors is elevated in the denervated midbrain and is involved in the formation of ectopic axonal projection from the intact cortex. Evidence further demonstrated that these factors are expressed by astrocytes and microglia, which are activated in the denervated midbrain. Thus, our present study provides a new insight into the mechanism of lesion-induced axonal remodeling and further therapeutic strategies after brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Córtex Cerebral/metabolismo , Hemisferectomia/tendências , Mesencéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Córtex Cerebral/química , Córtex Cerebral/citologia , Denervação/tendências , Técnicas de Inativação de Genes/métodos , Mesencéfalo/química , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos ICR , Regeneração Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Receptor trkB/análise , Receptor trkB/genética , Receptor trkB/metabolismo
8.
Cell Rep ; 37(8): 110031, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818557

RESUMO

Brain circuits are comprised of distinct interconnected neurons that are assembled by synaptic recognition molecules presented by defined pre- and post-synaptic neurons. This cell-cell recognition process is mediated by varying cellular adhesion molecules, including the latrophilin family of adhesion G-protein-coupled receptors. Focusing on parahippocampal circuitry, we find that latrophilin-2 (Lphn2; gene symbol ADGRL2) is specifically enriched in interconnected subregions of the medial entorhinal cortex (MEC), presubiculum (PrS), and parasubiculum (PaS). Retrograde viral tracing from the Lphn2-enriched region of the MEC reveals unique topographical patterning of inputs arising from the PrS and PaS that mirrors Lphn2 expression. Using a Lphn2 conditional knockout mouse model, we find that deletion of MEC Lphn2 expression selectively impairs retrograde viral labeling of inputs arising from the ipsilateral PrS. Combined with analysis of Lphn2 expression within the MEC, this study reveals Lphn2 to be selectively expressed by defined cell types and essential for MEC-PrS circuit connectivity.


Assuntos
Córtex Entorrinal/fisiologia , Receptores de Peptídeos/genética , Animais , Córtex Entorrinal/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Neurônios/fisiologia , Giro Para-Hipocampal/metabolismo , Receptores de Peptídeos/metabolismo
9.
J Neurosci ; 41(47): 9742-9755, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34649954

RESUMO

The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels. The sgACC has broad-based termination patterns. In contrast, the pgACC has a more restricted pattern, which was always nested in sgACC terminals. Terminal overlap occurred in subregions of the accessory basal and basal nuclei, which we termed "hotspots." In triple-labeling confocal studies, the majority of randomly selected CaMKIIα-positive cells (putative amygdala glutamatergic neurons) in hotspots received dual contacts from the sgACC and pgACC. The ratio of dual contacts occurred over a surprisingly narrow range, suggesting a consistent, tight balance of afferent contacts on postsynaptic neurons. Large boutons, which are associated with greater synaptic strength, were ∼3 times more frequent on sgACC versus pgACC axon terminals in hotspots, consistent with a fast "driver" function. Together, the results reveal a nested interaction in which pgACC ("conflict/social monitoring") terminals converge with the broader sgACC ("salience") terminals at both the mesoscopic and cellular level. The presynaptic organization in hotspots suggests that shifts in arousal states can rapidly and flexibly influence decision-making functions in the amygdala.SIGNIFICANCE STATEMENT The subgenual (sgACC) and perigenual cingulate (pgACC) have distinct structural and functional characteristics and are important afferent modulators of the amygdala. The sgACC is critical for arousal, whereas the pgACC mediates conflict-monitoring, including in social contexts. Using dual tracer injections in the same monkey, we found that sgACC inputs broadly project in the main amygdala nuclei, whereas pgACC inputs were more restricted and nested in zones containing sgACC terminals (hotspots). The majority of CaMKIIα + (excitatory) amygdala neurons in hotspots received converging contacts, which were tightly balanced. pgACC and sgACC afferent streams are therefore highly interdependent in these specific amygdala subregions, permitting "internal arousal" states to rapidly shape responses of amygdala neurons involved in conflict and social monitoring networks.


Assuntos
Tonsila do Cerebelo/citologia , Giro do Cíngulo/citologia , Vias Neurais/citologia , Neurônios Aferentes/citologia , Células Piramidais/citologia , Tonsila do Cerebelo/fisiologia , Animais , Nível de Alerta/fisiologia , Giro do Cíngulo/fisiologia , Macaca fascicularis , Masculino , Vias Neurais/fisiologia , Neurônios Aferentes/fisiologia , Células Piramidais/fisiologia
10.
J Neurosci ; 41(46): 9539-9560, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34642212

RESUMO

The lateral hypothalamic area (LHA) is a highly conserved brain region critical for maintaining physiological homeostasis and goal-directed behavior. LHA neurons that express melanin-concentrating hormone (MCH) are key regulators of arousal, energy balance, and motivated behavior. However, cellular and functional diversity among LHAMCH neurons is not well understood. Previous anatomic and molecular data suggest that LHAMCH neurons may be parsed into at least two distinct subpopulations, one of which is enriched in neurokinin-3 receptor (NK3R), the receptor for neurokinin B (NKB), encoded by the Tac2 gene. This tachykininergic ligand-receptor system has been implicated in reproduction, fear memory, and stress in other brain regions, but NKB interactions with LHAMCH neurons are poorly understood. We first identified how LHAMCH subpopulations may be distinguished anatomically and electrophysiologically. To dissect functional connectivity between NKB-expressing neurons and LHAMCH neurons, we used Cre-dependent retrograde and anterograde viral tracing in male Tac2-Cre mice and identified Tac2/EYFP+ neurons in the bed nucleus of the stria terminalis and central nucleus of the amygdala, the central extended amygdala, as major sources of NKB input onto LHAMCH neurons. In addition to innervating the LHA, these limbic forebrain NKB neurons also project to midbrain and brainstem targets. Finally, using a dual-virus approach, we found that optogenetic activation of these inputs in slices evokes GABA release onto a subset of LHAMCH neurons but lacked specificity for the NK3R+ subpopulation. Overall, these data define parallel tachykininergic/GABAergic limbic forebrain projections that are positioned to modulate multiple nodes of homeostatic and behavioral control.SIGNIFICANCE STATEMENT The LHA orchestrates fundamental behavioral states in the mammalian hypothalamus, including arousal, energy balance, memory, stress, and motivated behavior. The neuropeptide MCH defines one prominent population of LHA neurons, with multiple roles in the regulation of homeostatic behavior. Outstanding questions remain concerning the upstream inputs that control MCH neurons. We sought to define neurochemically distinct pathways in the mouse brain that may communicate with specific MCH neuron subpopulations using viral-based retrograde and anterograde neural pathway tracing and optogenetics in brain slices. Here, we identify a specific neuropeptide-defined forebrain circuit that makes functional synaptic connections with MCH neuron subpopulations. This work lays the foundation for further manipulating molecularly distinct neural circuits that modulate innate behavioral states.


Assuntos
Núcleo Central da Amígdala/citologia , Região Hipotalâmica Lateral/citologia , Vias Neurais/citologia , Neurônios/citologia , Animais , Hormônios Hipotalâmicos/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
11.
Cell Rep ; 37(3): 109837, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686328

RESUMO

The selection of goal-directed behaviors is supported by neural circuits located within the frontal cortex. Frontal cortical afferents arise from multiple brain areas, yet the cell-type-specific targeting of these inputs is unclear. Here, we use monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting distinct classes of local inhibitory interneurons and excitatory projection neurons in mouse infralimbic frontal cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide receive a large proportion of inputs from the hippocampus, while interneurons expressing neuron-derived neurotrophic factor receive a large proportion of inputs from thalamic regions. A similar dichotomy is present among the four different excitatory projection neurons. These results show a prominent bias among long-range hippocampal and thalamic afferent systems in their targeting to specific sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.


Assuntos
Lobo Frontal/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Inibição Neural , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Parvalbuminas/genética , Parvalbuminas/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Sinapses/metabolismo , Tálamo/citologia , Tálamo/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
12.
Cell Rep ; 37(3): 109855, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686344

RESUMO

The protein tau has been implicated in many brain disorders. In animal models, tau reduction suppresses epileptogenesis of diverse causes and ameliorates synaptic and behavioral abnormalities in various conditions associated with excessive excitation-inhibition (E/I) ratios. However, the underlying mechanisms are unknown. Global genetic ablation of tau in mice reduces the action potential (AP) firing and E/I ratio of pyramidal cells in acute cortical slices without affecting the excitability of these cells. Tau ablation reduces the excitatory inputs to inhibitory neurons, increases the excitability of these cells, and structurally alters their axon initial segments (AISs). In primary neuronal cultures subjected to prolonged overstimulation, tau ablation diminishes the homeostatic response of AISs in inhibitory neurons, promotes inhibition, and suppresses hypersynchrony. Together, these differential alterations in excitatory and inhibitory neurons help explain how tau reduction prevents network hypersynchrony and counteracts brain disorders causing abnormally increased E/I ratios.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Inibição Neural , Vias Neurais/metabolismo , Células Piramidais/metabolismo , Córtex Somatossensorial/metabolismo , Proteínas tau/deficiência , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Células Cultivadas , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Feminino , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Plasticidade Neuronal , Córtex Somatossensorial/citologia , Fatores de Tempo , Proteínas tau/genética
13.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519270

RESUMO

Synaptic connections in many brain circuits fluctuate, exhibiting substantial turnover and remodelling over hours to days. Surprisingly, experiments show that most of this flux in connectivity persists in the absence of learning or known plasticity signals. How can neural circuits retain learned information despite a large proportion of ongoing and potentially disruptive synaptic changes? We address this question from first principles by analysing how much compensatory plasticity would be required to optimally counteract ongoing fluctuations, regardless of whether fluctuations are random or systematic. Remarkably, we find that the answer is largely independent of plasticity mechanisms and circuit architectures: compensatory plasticity should be at most equal in magnitude to fluctuations, and often less, in direct agreement with previously unexplained experimental observations. Moreover, our analysis shows that a high proportion of learning-independent synaptic change is consistent with plasticity mechanisms that accurately compute error gradients.


Assuntos
Comportamento Animal , Encéfalo/fisiologia , Memória , Modelos Neurológicos , Vias Neurais/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Transmissão Sináptica , Animais , Encéfalo/citologia , Simulação por Computador , Humanos , Camundongos , Vias Neurais/citologia , Ratos , Fatores de Tempo
15.
Nat Commun ; 12(1): 2811, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990558

RESUMO

The supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Hipotálamo Posterior/citologia , Hipotálamo Posterior/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Comportamento Consumatório/efeitos dos fármacos , Comportamento Consumatório/fisiologia , Dopamina/fisiologia , Feminino , Ácido Glutâmico/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Ratos , Ratos Wistar , Reforço Psicológico , Septo do Cérebro/citologia , Septo do Cérebro/efeitos dos fármacos , Septo do Cérebro/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
16.
J Neurosci ; 41(22): 4809-4825, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33849948

RESUMO

The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Navegação Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Córtex Entorrinal/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Córtex Visual/citologia
17.
Neuron ; 109(10): 1721-1738.e4, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33823137

RESUMO

Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.


Assuntos
Gânglios da Base/citologia , Tronco Encefálico/citologia , Diencéfalo/citologia , Neurônios/fisiologia , Animais , Gânglios da Base/fisiologia , Tronco Encefálico/fisiologia , Diencéfalo/fisiologia , Potenciais Evocados , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia
18.
J Neurosci ; 41(18): 3966-3987, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731445

RESUMO

The classic basal ganglia circuit model asserts a complete segregation of the two striatal output pathways. Empirical data argue that, in addition to indirect-pathway striatal projection neurons (iSPNs), direct-pathway striatal projection neurons (dSPNs) innervate the external globus pallidus (GPe). However, the functions of the latter were not known. In this study, we interrogated the organization principles of striatopallidal projections and their roles in full-body movement in mice (both males and females). In contrast to the canonical motor-promoting response of dSPNs in the dorsomedial striatum (DMSdSPNs), optogenetic stimulation of dSPNs in the dorsolateral striatum (DLSdSPNs) suppressed locomotion. Circuit analyses revealed that dSPNs selectively target Npas1+ neurons in the GPe. In a chronic 6-hydroxydopamine lesion model of Parkinson's disease, the dSPN-Npas1+ projection was dramatically strengthened. As DLSdSPN-Npas1+ projection suppresses movement, the enhancement of this projection represents a circuit mechanism for the hypokinetic symptoms of Parkinson's disease that has not been previously considered. In sum, our results suggest that dSPN input to the GPe is a critical circuit component that is involved in the regulation of movement in both healthy and parkinsonian states.SIGNIFICANCE STATEMENT In the classic basal ganglia model, the striatum is described as a divergent structure: it controls motor and adaptive functions through two segregated, opposing output streams. However, the experimental results that show the projection from direct-pathway neurons to the external pallidum have been largely ignored. Here, we showed that this striatopallidal subpathway targets a select subset of neurons in the external pallidum and is motor-suppressing. We found that this subpathway undergoes changes in a Parkinson's disease model. In particular, our results suggest that the increase in strength of this subpathway contributes to the slowness or reduced movements observed in Parkinson's disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Globo Pálido/fisiologia , Neostriado/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Globo Pálido/citologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento/fisiologia , Neostriado/citologia , Proteínas do Tecido Nervoso/genética , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Coelhos
19.
Cell Rep ; 34(9): 108801, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657367

RESUMO

Septal parvalbumin-expressing (PV+) and calbindin-expressing (CB+) projections inhibit low-threshold and fast-spiking interneurons, respectively, in the medial entorhinal cortex (MEC). We investigate how the two inputs control neuronal activity in the MEC in freely moving mice. Stimulation of PV+ and CB+ terminals causes disinhibition of spatially tuned MEC neurons, but exerts differential effects on temporal coding and burst firing. Thus, recruitment of PV+ projections disrupts theta-rhythmic firing of MEC neurons, while stimulation of CB+ projections increases burst firing of grid cells and enhances phase precession in a cell-type-specific manner. Inactivation of septal PV+ or CB+ neurons differentially affects context, reference, and working memory. Together, our results reveal how specific connectivity of septal GABAergic projections with MEC interneurons translates into differential modulation of MEC neuronal coding.


Assuntos
Potenciais de Ação , Comportamento Animal , Córtex Entorrinal/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Memória de Curto Prazo , Inibição Neural , Aprendizagem Espacial , Ritmo Teta , Animais , Calbindinas/genética , Calbindinas/metabolismo , Córtex Entorrinal/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Fatores de Tempo
20.
J Comp Neurol ; 529(10): 2789-2812, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550608

RESUMO

Previous studies in prosimian galagos (Otolemur garnetti) have demonstrated that posterior parietal cortex (PPC) is subdivided into several functionally distinct domains, each of which mediates a specific type of complex movements (e.g., reaching, grasping, hand-to-mouth) and has a different pattern of cortical connections. Here we identified a medially located domain in PPC where combined forelimb and hindlimb movements, as if climbing or running, were evoked by long-train intracortical microstimulation. We injected anatomical tracers in this climbing/running domain of PPC to reveal its cortical connections. Our results showed the PPC climbing domain had dense intrinsic connections within rostral PPC and reciprocal connections with forelimb and hindlimb region in primary motor cortex (M1) of the ipsilateral hemisphere. Fewer connections were with dorsal premotor cortex (PMd), supplementary motor (SMA), and cingulate motor (CMA) areas, as well as somatosensory cortex including areas 3a, 3b, and 1-2, secondary somatosensory (S2), parietal ventral (PV), and retroinsular (Ri) areas. The rostral portion of the climbing domain had more connections with primary somatosensory cortex than the caudal portion. Cortical projections were found in functionally matched domains in M1 and premotor cortex (PMC). Similar patterns of connections with fewer labeled neurons and terminals were seen in the contralateral hemisphere. These connection patterns are consistent with the proposed role of the climbing/running domain as part of a parietal-frontal network for combined use of the limbs in locomotion as in climbing and running. The cortical connections identify this action-specific domain in PPC as a more somatosensory driven domain.


Assuntos
Galago/anatomia & histologia , Galago/fisiologia , Atividade Motora/fisiologia , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Animais , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA