Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Neuroimage ; 207: 116345, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712165

RESUMO

Children with unilateral resections of ventral occipito-temporal cortex (VOTC) typically do not evince visual perceptual impairments, even when relatively large swathes of VOTC are resected. In search of possible explanations for this behavioral competence, we evaluated white matter microstructure and connectivity in eight pediatric epilepsy patients following unilateral cortical resection and 15 age-matched controls. To uncover both local and broader resection-induced effects, we analyzed tractography data using two complementary approaches. First, the microstructural properties were measured in the inferior longitudinal and the inferior fronto-occipital fasciculi, the major VOTC association tracts. Group differences were only evident in the ipsilesional, and not in the contralesional, hemisphere, and single-subject analyses revealed that these differences were limited to the site of the resection. Second, graph theory was used to characterize the connectivity of the contralesional occipito-temporal regions. There were no changes to the network properties in patients with left VOTC resections nor in patients with resections outside the VOTC, but altered network efficiency was observed in two cases with right VOTC resections. These results suggest that, in many, although perhaps not all, cases of unilateral VOTC resections in childhood, the white matter profile in the preserved contralesional hemisphere along with residual neural activity might be sufficient for normal visual perception.


Assuntos
Rede Nervosa/fisiopatologia , Córtex Visual/efeitos dos fármacos , Vias Visuais/irrigação sanguínea , Substância Branca/fisiologia , Mapeamento Encefálico , Imagem de Tensor de Difusão/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/anatomia & histologia , Vias Visuais/fisiopatologia
3.
Hum Brain Mapp ; 38(1): 120-139, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27585292

RESUMO

According to a non-hierarchical view of human cortical face processing, selective responses to faces may emerge in a higher-order area of the hierarchy, in the lateral part of the middle fusiform gyrus (fusiform face area [FFA]) independently from face-selective responses in the lateral inferior occipital gyrus (occipital face area [OFA]), a lower order area. Here we provide a stringent test of this hypothesis by gradually revealing segmented face stimuli throughout strict linear descrambling of phase information [Ales et al., 2012]. Using a short sampling rate (500 ms) of fMRI acquisition and single subject statistical analysis, we show a face-selective responses emerging earlier, that is, at a lower level of structural (i.e., phase) information, in the FFA compared with the OFA. In both regions, a face detection response emerging at a lower level of structural information for upright than inverted faces, both in the FFA and OFA, in line with behavioral responses and with previous findings of delayed responses to inverted faces with direct recordings of neural activity were also reported. Overall, these results support the non-hierarchical view of human cortical face processing and open new perspectives for time-resolved analysis at the single subject level of fMRI data obtained during continuously evolving visual stimulation. Hum Brain Mapp 38:120-139, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Face , Reconhecimento Visual de Modelos/fisiologia , Vias Visuais/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Vias Visuais/irrigação sanguínea , Vias Visuais/diagnóstico por imagem , Adulto Jovem
4.
Brain Res ; 1657: 130-139, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27956122

RESUMO

Iron deficiency has a critical impact on maturational mechanisms of the brain and the damage related to neuroanatomical parameters is not satisfactorily reversed after iron replacement. However, emerging evidence suggest that enriched early experience may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Given the fact that tactile stimulation (TS) treatment has been previously shown to be an effective therapeutic approach and with potential application to humans, here we ask whether exposure to TS treatment, from postnatal day (P) 1 to P32 for 3min/day, could also be employed to prevent neuroanatomical changes in the optic nerve of rats maintained on an iron-deficient diet during brain development. We found that iron deficiency changed astrocyte, oligodendrocyte, damaged fiber, and myelinated fiber density, however, TS reversed the iron-deficiency-induced alteration in oligodendrocyte, damaged fiber and myelinated fiber density, but failed to reverse astrocyte density. Our results suggest that early iron deficiency may act by disrupting the timing of key steps in visual system development thereby modifying the normal progression of optic nerve maturation. However, optic nerve development is sensitive to enriching experiences, and in the current study we show that this sensitivity can be used to prevent damage from postnatal iron deficiency during the critical period.


Assuntos
Deficiências de Ferro , Manipulações Musculoesqueléticas , Nervo Óptico/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Peso Corporal , Dieta , Modelos Animais de Doenças , Manobra Psicológica , Masculino , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Neuroproteção , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Nervo Óptico/irrigação sanguínea , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Estimulação Física , Distribuição Aleatória , Ratos Wistar , Vias Visuais/irrigação sanguínea , Vias Visuais/metabolismo , Vias Visuais/patologia
5.
J Alzheimers Dis ; 51(4): 1119-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26923019

RESUMO

BACKGROUND: Posterior cortical atrophy (PCA) induces progressive dysfunction of ventral and dorsal visual networks. Little is known, however, about corresponding changes in functional connectivity (FC). OBJECTIVES: To investigate FC changes in the visual networks, their relationship with cortical atrophy, and the association with Alzheimer's disease (AD) pathology. METHODS: Ten PCA patients and 28 age-matched controls participated in the study. Using resting state fMRI, we measured FC in ventral and dorsal cortical visual networks, defined on the basis of a priori knowledge of long-range white matter connections. To assess the relationships with AD, we determined AD biomarkers in cerebrospinal fluid and FC in the default mode network (DMN), which is vulnerable to AD pathology. Voxel-based morphometry analysis assessed the pattern of grey matter (GM) atrophy. RESULTS: PCA patients showed GM atrophy in bilateral occipital and inferior parietal regions. PCA patients had lower FC levels in a ventral network than controls, but higher FC in inferior components of the dorsal network. In particular, the increased connectivity correlated with greater GM atrophy in occipital regions. All PCA patients had positive cerebrospinal fluid biomarkers for AD; however, FC in global DMN did not differ from controls. CONCLUSIONS: FC in PCA reflects brain structure in a non-univocal way. Hyperconnectivity of dorsal networks may indicate aberrant communication in response to posterior brain atrophy or processes of neural resilience during the initial stage of brain dysfunction. The lack of difference from controls in global DMN FC highlights the atypical nature of PCA with respect to typical AD.


Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Vias Visuais/fisiopatologia , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Atrofia , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxigênio/sangue , Vias Visuais/irrigação sanguínea , Vias Visuais/diagnóstico por imagem
6.
Neuropsychologia ; 81: 198-206, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26731198

RESUMO

Recent findings suggest that visual objects may be mapped along the ventral occipitotemporal cortex according to their real-world size (Konkle and Oliva, 2012). It has been argued that such mapping does not reflect an abstract, conceptual size representation, but rather the visual or functional properties associated with small versus big real-world objects. To determine whether a more abstract conceptual size representation may affect visual cortical activation we used meaningless geometrical shapes, devoid of semantic or functional associations, which were associated with specific size representations by virtue of extensive training. Following training, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a conceptual size comparison task on the geometrical shapes. In addition, a size comparison task was conducted for numeral digits denoting small and big numbers. A region-of-interest analysis revealed larger blood oxygenation level dependent (BOLD) responses for conceptually 'big' than for conceptually 'small' shapes, as well as for big versus small numbers, within medial (parahippocampal place area, PPA) and lateral (occipital place area, OPA) place-selective regions. Processing of the 'big' visual shapes further elicited enhanced activation in early visual cortex, possibly reflecting top-down projections from PPA. By using arbitrary shapes and numbers we minimized visual, categorical, or functional influences on fMRI measurement, providing evidence for a possible neural mechanism underlying the representation of abstract conceptual size within the ventral visual stream.


Assuntos
Mapeamento Encefálico , Formação de Conceito/fisiologia , Percepção de Tamanho/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Adulto Jovem
7.
J Neurosci ; 36(2): 432-44, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758835

RESUMO

The dorsal and ventral visual pathways represent both visual and conceptual object properties. Yet the relative contribution of these two factors in the representational content of visual areas is unclear. Indeed, research investigating brain category representations rarely dissociate visual and semantic properties of objects. We present a human event-related fMRI study with a two-factorial stimulus set with 54 images that explicitly dissociates shape from category to investigate their independent contribution as well as their interactions through representational similarity analyses. Results reveal a contribution from each dimension in both streams, with a transition from shape to category along the posterior-to-anterior anatomical axis. The nature of category representations differs in the two pathways: ventral areas represent object animacy and dorsal areas represent object action properties. Furthermore, information about shape evolved from low-level pixel-based to high-level perceived shape following a posterior-to-anterior gradient similar to the shape-to-category emergence. To conclude, results show that representations of shape and category independently coexist, but at the same time they are closely related throughout the visual hierarchy. SIGNIFICANCE STATEMENT: Research investigating visual cortex conceptual category representations rarely takes into account visual properties of objects. In this report, we explicitly dissociate shape from category and investigate independent contributions and interactions of these two highly correlated dimensions.


Assuntos
Mapeamento Encefálico , Formação de Conceito/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Análise por Conglomerados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Julgamento , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Psicofísica , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Adulto Jovem
8.
Neuropsychologia ; 81: 1-11, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26683383

RESUMO

Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand.


Assuntos
Face , Orientação/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Análise de Variância , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Adulto Jovem
9.
Cereb Cortex ; 26(2): 639-646, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25267856

RESUMO

A multiplicity of sensory and cognitive functions has been attributed to the large cortical region at the temporo-parietal junction (TPJ). Using functional MRI, we report that a small region lateralized within the right TPJ responds robustly to certain simple visual stimuli ("vTPJ"). The vTPJ was found in all right hemispheres (n = 7), posterior to the auditory cortex. To manipulate stimuli and attention, subjects were presented with a mixture of visual and auditory stimuli in a concurrent block design in 2 experiments: (1) A simple visual stimulus (a grating pattern modulating in mean luminance) elicited robust responses in the vTPJ, whether or not the subject attended to vision and(2) a drifting low-contrast dartboard pattern of constant mean luminance evoked robust responses in the vTPJ when it was task-relevant (visual task), and smaller responses when it was not (auditory task). The results suggest a focal, visually responsive region within the right TPJ that is powerfully driven by certain visual stimuli (luminance fluctuations), and that can be driven by other visual stimuli when the subject is attending. The precise localization of this visually responsive region is helpful in segmenting the TPJ and to better understand its role in visual awareness and related disorders such as extinction and neglect.


Assuntos
Mapeamento Encefálico , Lateralidade Funcional/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Ondas Encefálicas/fisiologia , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/irrigação sanguínea , Testes Neuropsicológicos , Oxigênio/sangue , Lobo Parietal/irrigação sanguínea , Estimulação Luminosa , Detecção de Sinal Psicológico , Lobo Temporal/irrigação sanguínea , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia
10.
Neuropsychologia ; 83: 149-160, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26577136

RESUMO

Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider scope, this implies that at least in some cases cross-modal plasticity which enables the recruitment of areas for new tasks may be dominated by sensory independent task specific activation.


Assuntos
Cegueira/fisiopatologia , Encéfalo/fisiopatologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Leitura , Percepção Visual/fisiologia , Vocabulário , Estimulação Acústica , Adulto , Cegueira/patologia , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiopatologia , Adulto Jovem
11.
J Neurosci ; 35(42): 14148-59, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490856

RESUMO

The ability to recognize objects in clutter is crucial for human vision, yet the underlying neural computations remain poorly understood. Previous single-unit electrophysiology recordings in inferotemporal cortex in monkeys and fMRI studies of object-selective cortex in humans have shown that the responses to pairs of objects can sometimes be well described as a weighted average of the responses to the constituent objects. Yet, from a computational standpoint, it is not clear how the challenge of object recognition in clutter can be solved if downstream areas must disentangle the identity of an unknown number of individual objects from the confounded average neuronal responses. An alternative idea is that recognition is based on a subpopulation of neurons that are robust to clutter, i.e., that do not show response averaging, but rather robust object-selective responses in the presence of clutter. Here we show that simulations using the HMAX model of object recognition in cortex can fit the aforementioned single-unit and fMRI data, showing that the averaging-like responses can be understood as the result of responses of object-selective neurons to suboptimal stimuli. Moreover, the model shows how object recognition can be achieved by a sparse readout of neurons whose selectivity is robust to clutter. Finally, the model provides a novel prediction about human object recognition performance, namely, that target recognition ability should show a U-shaped dependency on the similarity of simultaneously presented clutter objects. This prediction is confirmed experimentally, supporting a simple, unifying model of how the brain performs object recognition in clutter. SIGNIFICANCE STATEMENT: The neural mechanisms underlying object recognition in cluttered scenes (i.e., containing more than one object) remain poorly understood. Studies have suggested that neural responses to multiple objects correspond to an average of the responses to the constituent objects. Yet, it is unclear how the identities of an unknown number of objects could be disentangled from a confounded average response. Here, we use a popular computational biological vision model to show that averaging-like responses can result from responses of clutter-tolerant neurons to suboptimal stimuli. The model also provides a novel prediction, that human detection ability should show a U-shaped dependency on target-clutter similarity, which is confirmed experimentally, supporting a simple, unifying account of how the brain performs object recognition in clutter.


Assuntos
Encéfalo/fisiologia , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Atenção , Encéfalo/irrigação sanguínea , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Biológicos , Oxigênio/sangue , Reconhecimento Visual de Modelos , Estimulação Luminosa , Vias Visuais/irrigação sanguínea , Adulto Jovem
12.
Hum Brain Mapp ; 36(12): 5220-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416222

RESUMO

Suppression of 5-25 Hz oscillations have been observed in MT+ during pursuit eye movements, suggesting oscillations that play a role in oculomotor control and/or the integration of extraretinal signals during pursuit. The amplitude of these rhythms appears to covary with head-centered eye position, but an alternative is that they depend on a velocity signal that lags the movement of the eyes. To investigate, we explored how alpha and beta amplitude changes related to ongoing eye movement depended on pursuit at different eccentricities. The results revealed largely identical patterns of modulation in the alpha and beta amplitude, irrespective of the eccentricity at which the pursuit eye movement was performed. The signals we measured therefore do not depend on head-centered position. A second experiment was designed to investigate whether the alpha and beta oscillations depended on the direction of pursuit, as opposed to just speed. We found no evidence that alpha or beta oscillations depended on direction, but there was a significant effect of eye speed on the magnitude of the beta suppression. This suggests distinct functional roles for alpha and beta suppression in pursuit behavior.


Assuntos
Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Sincronização Cortical/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Lobo Temporal/fisiologia , Adulto , Análise de Variância , Mapeamento Encefálico , Eletroculografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Estimulação Luminosa , Tempo de Reação , Lobo Temporal/irrigação sanguínea , Fatores de Tempo , Vias Visuais/anatomia & histologia , Vias Visuais/irrigação sanguínea , Adulto Jovem
13.
Vis Neurosci ; 32: E015, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26241199

RESUMO

Inferring neural responses from functional magnetic resonance imaging (fMRI) data is challenging. Even if we take advantage of high-field systems to acquire data with submillimeter resolution, we are still acquiring data in which a single datum summarizes the responses of tens of thousands of neurons. Excitation and inhibition, spikes and subthreshold membrane potential modulations, local and long-range computations, and tuned and nonselective responses are mixed together in one signal. With a priori knowledge of the underlying neural population responses, careful experiment design allows us to manipulate the experiment or task design so that subpopulations are selectively modulated, and our experiments can reveal those tuning functions. However, because we want to be able to use fMRI to discover new kinds of tuning functions and selectivity, we cannot limit ourselves to experiments in which we already know what we are looking for. Broadly speaking, analyses that rely on classification of responses that are distributed across the local neural population [multi-voxel pattern analyses (MVPA)] offer the ability to discover new kinds of information representation and selectivities in neural subpopulations. There is, however, no way to determine how the information discovered with MVPA or other analyses is related to the underlying neuronal tuning functions. Therefore, we must continue to rely on behavioral, computational, and animal models to develop theories of information representation in mid-tier visual cortical areas. Once encoding models exist, fMRI can be powerful for testing these a priori models of information representation. As an aide in developing these models, an important contribution that fMRI can make to our understanding of mid-tier visual areas is derived from connectivity analyses and experiments that study information sharing between visual areas. This ability to quantify localized population average responses throughout the brain is the strength we can best leverage to discover new properties of local and long-range neural networks.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Animais , Humanos , Processamento de Imagem Assistida por Computador , Oxigênio/sangue
14.
Vis Neurosci ; 32: E001, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26239105

RESUMO

Here we propose that earlier-demonstrated details in the primate visual cortical map may account for an otherwise puzzling (and problematic) finding in the current human fMRI literature. Specifically, the well-known regions LO and MT(+) reportedly overlap in the human cortical visual map, when those two regions are localized using standard stimulus comparisons in conventional fMRI experiments. Here we describe evidence supporting the idea that the apparent functional overlap between LO and MT arises from a third area (the MT crescent: "MTc"), which is well known to surround posterior MT based on earlier histological, neuroanatomical, and electrophysiological studies in nonhuman primates. If we assume that MTc also exists in human visual cortex, and that it has a location and functional properties intermediate to those in LO and MT, simplistic modeling confirmed that this arrangement could produce apparent overlap between localizers for LO and MT in conventional fMRI maps in human visual cortex.


Assuntos
Mapeamento Encefálico , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Percepção de Movimento/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea
15.
J Cogn Neurosci ; 27(11): 2240-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26226078

RESUMO

Visual perception and awareness have strict limitations. We suggest that one source of these limitations is the representational architecture of the visual system. Under this view, the extent to which items activate the same neural channels constrains the amount of information that can be processed by the visual system and ultimately reach awareness. Here, we measured how well stimuli from different categories (e.g., faces and cars) blocked one another from reaching awareness using two distinct paradigms that render stimuli invisible: visual masking and continuous flash suppression. Next, we used fMRI to measure the similarity of the neural responses elicited by these categories across the entire visual hierarchy. Overall, we found strong brain-behavior correlations within the ventral pathway, weaker correlations in the dorsal pathway, and no correlations in early visual cortex (V1-V3). These results suggest that the organization of higher level visual cortex constrains visual awareness and the overall processing capacity of visual cognition.


Assuntos
Conscientização/fisiologia , Mapeamento Encefálico , Encéfalo/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Encéfalo/irrigação sanguínea , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Mascaramento Perceptivo , Estimulação Luminosa , Reprodutibilidade dos Testes , Estatística como Assunto , Vias Visuais/irrigação sanguínea
16.
J Neurosci ; 35(27): 9836-47, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26156986

RESUMO

The human subcortex contains multiple nuclei that govern the transmission of information to and among cortical areas. In the visual domain, these nuclei are organized into retinotopic maps. Because of their small size, these maps have been difficult to precisely measure using phase-encoded functional magnetic resonance imaging, particularly in the eccentricity dimension. Using instead the population receptive field model to estimate the response properties of individual voxels, we were able to resolve two previously unreported retinotopic maps in the thalamic reticular nucleus and the substantia nigra. We measured both the polar angle and eccentricity components, receptive field size and hemodynamic response function delay, in the these nuclei and in the lateral geniculate nucleus, the superior colliculus, and the lateral and intergeniculate pulvinars. The anatomical boundaries of these nuclei were delineated using multiple averaged proton density-weighted images and were used to constrain and confirm the functional activations. Deriving the retinotopic organization of these small, subcortical nuclei is the first step in exploring their response properties and their roles in neural dynamics.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Retina/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Pulvinar/irrigação sanguínea , Pulvinar/fisiologia , Reprodutibilidade dos Testes , Vias Visuais/irrigação sanguínea
17.
J Neurosci ; 35(27): 9848-71, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26156987

RESUMO

The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT: The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral human pulvinar and extensive topographically organized connectivity with visual cortex. This organization is similar to other nonhuman primates and provides additional support that the general organization of the pulvinar is consistent across the primate phylogenetic tree. These results suggest that the human pulvinar, like other primates, is well positioned to regulate corticocortical communication.


Assuntos
Pulvinar/irrigação sanguínea , Pulvinar/fisiologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Vias Visuais/irrigação sanguínea , Adulto , Animais , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Filogenia , Psicofísica , Descanso , Movimentos Sacádicos , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Adulto Jovem
18.
J Neurosci ; 35(27): 10005-14, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26157000

RESUMO

Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Modelos Neurológicos , Vias Visuais/fisiologia , Encéfalo/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Vias Visuais/irrigação sanguínea
19.
J Integr Neurosci ; 14(2): 155-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25939499

RESUMO

Brain is the command center for the body and contains a lot of information which can be extracted by using different non-invasive techniques. Electroencephalography (EEG), Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are the most common neuroimaging techniques to elicit brain behavior. By using these techniques different activity patterns can be measured within the brain to decode the content of mental processes especially the visual and auditory content. This paper discusses the models and imaging techniques used in visual decoding to investigate the different conditions of brain along with recent advancements in brain decoding. This paper concludes that it's not possible to extract all the information from the brain, however careful experimentation, interpretation and powerful statistical tools can be used with the neuroimaging techniques for better results.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Eletroencefalografia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Oxigênio/sangue , Percepção Visual
20.
J Neurosci ; 35(17): 6952-68, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25926470

RESUMO

Binocular disparity is a powerful depth cue for object perception. The computations for object vision culminate in inferior temporal cortex (IT), but the functional organization for disparity in IT is unknown. Here we addressed this question by measuring fMRI responses in alert monkeys to stimuli that appeared in front of (near), behind (far), or at the fixation plane. We discovered three regions that showed preferential responses for near and far stimuli, relative to zero-disparity stimuli at the fixation plane. These "near/far" disparity-biased regions were located within dorsal IT, as predicted by microelectrode studies, and on the posterior inferotemporal gyrus. In a second analysis, we instead compared responses to near stimuli with responses to far stimuli and discovered a separate network of "near" disparity-biased regions that extended along the crest of the superior temporal sulcus. We also measured in the same animals fMRI responses to faces, scenes, color, and checkerboard annuli at different visual field eccentricities. Disparity-biased regions defined in either analysis did not show a color bias, suggesting that disparity and color contribute to different computations within IT. Scene-biased regions responded preferentially to near and far stimuli (compared with stimuli without disparity) and had a peripheral visual field bias, whereas face patches had a marked near bias and a central visual field bias. These results support the idea that IT is organized by a coarse eccentricity map, and show that disparity likely contributes to computations associated with both central (face processing) and peripheral (scene processing) visual field biases, but likely does not contribute much to computations within IT that are implicated in processing color.


Assuntos
Mapeamento Encefálico , Percepção de Cores/fisiologia , Face , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Campos Visuais/fisiologia , Animais , Viés , Percepção de Profundidade , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Lobo Temporal/irrigação sanguínea , Disparidade Visual , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA