Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Physiol Biochem ; 214: 108936, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018775

RESUMO

Vicia villosa (VV) and Vicia sativa (VS) are legume forages highly valued for their excellent nitrogen fixation. However, no research has addressed the mechanisms underlying their differences in nitrogen fixation. This study employed physiological, cytological, and comparative transcriptomic approaches to elucidate the disparities in nitrogen fixation between them. Our results showed that the total amount of nitrogen fixed was 60.45% greater in VV than in VS, and the comprehensive nitrogen response performance was 94.19% greater, while the nitrogen fixation efficiency was the same. The infection zone and differentiated bacteroid proportion in mature VV root nodules were 33.76% and 19.35% greater, respectively, than those in VS. The size of the VV genome was 15.16% larger than that of the VS genome, consistent with its greater biomass. A significant enrichment of the flavonoid biosynthetic pathway was found only for VV-specific genes, among which chalcone-flavonone isomerase, caffeoyl-CoA-O-methyltransferase and stilbene synthase were extremely highly expressed. The VV-specific genes also exhibited significant enrichment in symbiotic nodulation; genes related to nodule-specific cysteine-rich peptides (NCRs) comprised 61.11% of the highly expressed genes. qRT‒PCR demonstrated that greater enrichment and expression of the dominant NCR (Unigene0004451) were associated with greater nodule bacteroid differentiation and greater nitrogen fixation in VV. Our findings suggest that the greater total nitrogen fixation of VV was attributed to its larger biomass, leading to a greater nitrogen demand and enhanced fixation physiology. This process is likely achieved by the synergistic effects of high bacteroid differentiation along with high expression of flavonoid and NCR genes.


Assuntos
Flavonoides , Fixação de Nitrogênio , Transcriptoma , Fixação de Nitrogênio/genética , Flavonoides/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Vicia/genética , Vicia/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/metabolismo , Peptídeos/metabolismo , Peptídeos/genética
2.
Plant Physiol Biochem ; 200: 107770, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216823

RESUMO

Common vetch (Vicia sativa L.) is a leguminous crop used to feed livestock with vegetative organs or fertilize soils by returning to the field. Survival of fall-seeded plants is often affected by freezing damage during overwintering. This study aims to investigate the transcriptomic profiling in response to cold in a mutant with reduced accumulation of anthocyanins under normal growth and low-temperature conditions for understanding the underlying mechanisms. The mutant had increased cold a tolerance with higher survival rate and biomass during overwintering compared to the wild type, which led to increased forage production. Transcriptomic analysis in combination with qRT-PCR and physiological measurements revealed that reduced anthocyanins accumulation in the mutant resulted from reduced expression of serial genes involving in anthocyanin biosynthesis, which led to the altered metabolism, with an increased accumulation of free amino acids and polyamines. The higher levels of free amino acids and proline in the mutant under low temperature were associated with improved cold tolerance. The altered expression of some genes involved in ABA and GA signaling was also associated with increased cold tolerance in the mutant.


Assuntos
Antocianinas , Vicia sativa , Antocianinas/genética , Antocianinas/metabolismo , Vicia sativa/genética , Vicia sativa/metabolismo , Transcriptoma/genética , Temperatura Baixa , Aminoácidos/metabolismo , Redes e Vias Metabólicas/genética , Regulação da Expressão Gênica de Plantas
3.
J Plant Physiol ; 278: 153811, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126616

RESUMO

Common vetch (Vicia sativa L.) is an important leguminous crop, providing humans with starch from seeds, feeding livestock with vegetative organs, or fertilizing soils by returning to field. It is aimed to evaluate salt tolerance in common vetch collections for breeding programs and to investigate the underlined physiological mechanisms. Relative germination rate and relative seedling growth showed great difference among common vetch collections in response to salt. A lower level of Na+ and higher levels of K+ and K+/Na+ ratio were maintained in both shoots and roots in salt-tolerant collections than in salt-sensitive ones under salt stress. Expression of the genes involved in transportation and redistribution of Na+ and K+ were cooperatively responsible for salt stress. Transcript levels of NHX7, HKT1, AKT2, and HAK17 in leaves and roots were induced after salt stress, with higher transcript levels in salt-tolerant collections compared with the sensitive ones. Proline and P5CS1 transcript levels were increased after salt stress, with higher levels in salt-tolerant collection compared with salt-sensitive ones. Both O2- and H2O2 were accumulated after salt stress, and lower levels were accumulated in salt-tolerant collection compared with salt-sensitive ones. Superoxide dismutase, catalase and ascorbate peroxidase activities were altered in response to salt and higher levels were maintained in salt-tolerant collections compared with salt-sensitive ones. It is suggested that salt tolerance in common vetch is associated with maintenance of K+ and Na+ homeostasis and the associated gene expression and promoted proline accumulation and antioxidant defense system.


Assuntos
Vicia sativa , Antioxidantes , Ascorbato Peroxidases , Catalase , Humanos , Peróxido de Hidrogênio , Melhoramento Vegetal , Prolina/metabolismo , Estresse Salino , Tolerância ao Sal/genética , Sódio/metabolismo , Solo , Amido , Estresse Fisiológico , Superóxido Dismutase , Vicia sativa/genética , Vicia sativa/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955619

RESUMO

Owing to its strong environmental suitability to adverse abiotic stress conditions, common vetch (Vicia sativa) is grown worldwide for both forage and green manure purposes and is an important protein source for human consumption and livestock feed. The germination of common vetch seeds and growth of seedlings are severely affected by salinity stress, and the response of common vetch to salinity stress at the molecular level is still poorly understood. In this study, we report the first comparative transcriptomic analysis of the leaves and roots of common vetch under salinity stress. A total of 6361 differentially expressed genes were identified in leaves and roots. In the roots, the stress response was dominated by genes involved in peroxidase activity. However, the genes in leaves focused mainly on Ca2+ transport. Overexpression of six salinity-inducible transcription factors in yeast further confirmed their biological functions in the salinity stress response. Our study provides the most comprehensive transcriptomic analysis of common vetch leaf and root responses to salinity stress. Our findings broaden the knowledge of the common and distinct intrinsic molecular mechanisms within the leaves and roots of common vetch and could help to develop common vetch cultivars with high salinity tolerance.


Assuntos
Vicia sativa , Regulação da Expressão Gênica de Plantas , Humanos , Folhas de Planta/genética , Salinidade , Estresse Salino/genética , Estresse Fisiológico/genética , Transcriptoma , Vicia sativa/genética
5.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35743262

RESUMO

As an important source of protein for livestock and human consumption, Vicia sativa is cultivated worldwide, but its seed production is hampered at high altitudes because of the short frost-free period. Flowering represents the transition from a vegetative to a reproductive period, and early flowering benefits plant seed production at high altitudes. However, the molecular mechanisms of flowering regulation in V. sativa remain elusive. In the present study, two V. sativa accessions with different flowering characteristics were used: Lan3 (early-flowering) was cultivated by our laboratory, and 503 (late-flowering) was selected from 222 V. sativa accessions after three years of field experiments. The shoot samples (shoot tip length = 10 cm) of these two accessions were collected 63, 70, and 77 days after sowing, and the molecular regulatory mechanism of the flowering process was identified by integrative analyses of the transcriptomes and metabolomes. Kyoto Encyclopedia of Genes and Genomes enrichment showed that the synthesis and signal transduction of plant hormone pathways were the most enriched pathways in 4274 differentially expressed genes (DEGs) and in 259 differential metabolites between Lan3 and 503. Moreover, the contents of three metabolites related to salicylic acid biosynthesis and the transcription levels of two DEGs related to salicylic acid signal transduction in Lan3 were higher than those in 503. Further verification in various accessions indicated that salicylic acid metabolism may be involved in the flowering regulation process of V. sativa. These findings provide valuable information for understanding the flowering mechanism and for promoting breeding research in V. sativa.


Assuntos
Vicia sativa , Regulação da Expressão Gênica de Plantas , Humanos , Metaboloma , Melhoramento Vegetal , Reprodução , Ácido Salicílico , Transcriptoma , Vicia sativa/genética
6.
Gene ; 823: 146358, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202731

RESUMO

Glutathione (GSH) is a multifunctional essential biothiol, and its metabolism is important for plant against toxic metals and metalloids. γ-Glutamylcysteine (γ-EC), which is catalyzed by γ-Glutamylcysteine synthetase (γ-ECS), is a rate-limiting intermediate in GSH synthesis. Here, a γ-ECS gene (Vsγ-ECS) from Vicia sativa was cloned, and its function in modulating Cd tolerance was studied. Vsγ-ECS is a chloroplast localization protein, and the expression of Vsγ-ECS was upregulated by Cd stress in root of V. sativa. Heterologous expression of Vsγ-ECS (35S::Vsγ-ECS) in Arabidopsis enhanced the Cd tolerance of plants through improved primary root length, fresh weight, chlorophyll content and low degree of oxidation associated with reduced H2O2 and lipid peroxidation. However, the Cd accumulation of Arabidopsis had no effect on Vsγ-ECS overexpression. Further analysis showed that the increased Cd tolerance in 35S::Vsγ-ECS was mainly due to the capacity of increasing GSH synthesis that improved Cd chelation by GSH and phytochelatins (PCs) and alleviated the oxidative stress caused by Cd stress. In summary, a γ-ECS was characterized from V. sativa, and it demonstrated a property for increasing GSH and PC synthesis to protect plants from Cd poisoning.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cádmio/efeitos adversos , Glutamato-Cisteína Ligase/genética , Vicia sativa/enzimologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Clonagem Molecular , Resistência a Medicamentos , Expressão Ectópica do Gene , Glutamato-Cisteína Ligase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de DNA , Vicia sativa/genética
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216390

RESUMO

The common vetch (Vicia sativa L.) seed is an ideal plant-based protein food for humans, but its edible value is mainly limited by the presence of cyanogenic glycosides that hydrolyze to produce toxic hydrogen cyanide (HCN), and the genes that regulate HCN synthesis in common vetch are unknown. In this study, seeds from common vetch at 5, 10, 15, 20, 25, 30, and 35 days after anthesis were sampled, and the seven stages were further divided into five developmental stages, S1, S2, S3, S4, and S5, based on morphological and transcriptome analyses. A total of 16,403 differentially expressed genes were identified in the five developmental stages. The HCN contents of seeds in these five stages were determined by alkaline titration, and weighted gene coexpression network analysis was used to explain the molecular regulatory mechanism of HCN synthesis in common vetch seeds. Eighteen key regulatory genes for HCN synthesis were identified, including the VsGT2, VsGT17 and CYP71A genes, as well as the VsGT1 gene family. VsGT1, VsGT2, VsGT17 and CYP71A jointly promoted HCN synthesis, from 5 to 25 days after anthesis, with VsGT1-1, VsGT1-4, VsGT1-11 and VsGT1-14 playing major roles. The HCN synthesis was mainly regulated by VsGT1, from 25 to 35 days after anthesis. As the expression level of VsGT1 decreased, the HCN content no longer increased. In-depth elucidation of seed HCN synthesis lays the foundations for breeding common vetch with low HCN content.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Cianeto de Hidrogênio/metabolismo , Sementes/genética , Sementes/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Perfilação da Expressão Gênica/métodos , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Mol Biol Rep ; 49(1): 313-320, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741708

RESUMO

BACKGROUND: Common vetch (Vicia sativa L.) is an annual legume with excellent suitability in cold and dry regions. Despite its great applied potential, the genomic information regarding common vetch currently remains unavailable. METHODS AND RESULTS: In the present study, the whole genome survey of common vetch was performed using the next-generation sequencing (NGS). A total of 79.84 Gbp high quality sequence data were obtained and assembled into 3,754,145 scaffolds with an N50 length of 3556 bp. According to the K-mer analyses, the genome size, heterozygosity rate and GC content of common vetch genome were estimated to be 1568 Mbp, 0.4345 and 35%, respectively. In addition, a total of 76,810 putative simple sequence repeats (SSRs) were identified. Among them, dinucleotide was the most abundant SSR type (44.94%), followed by Tri- (35.82%), Tetra- (13.22%), Penta- (4.47%) and Hexanucleotide (1.54%). Furthermore, a total of 58,175 SSR primer pairs were designed and ten of them were validated in Chinese common vetch. Further analysis showed that Chinese common vetch harbored high genetic diversity and could be clustered into two main subgroups. CONCLUSION: This is the first report about the genome features of common vetch, and the information will help to design whole genome sequencing strategies. The newly identified SSRs in this study provide basic molecular markers for germplasm characterization, genetic diversity and QTL mapping studies for common vetch.


Assuntos
Repetições de Microssatélites , Vicia sativa/genética , Sequenciamento Completo do Genoma/métodos , Composição de Bases , China , Mapeamento Cromossômico , Tamanho do Genoma , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
9.
BMC Plant Biol ; 20(1): 165, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293274

RESUMO

BACKGROUND: Common vetch (Vicia sativa L.) is an important self-pollinating annual forage legume and is of interest for drought prone regions as a protein source to feed livestock and human consumption. However, the development and production of common vetch are negatively affected by drought stress. Plants have evolved common or distinct metabolic pathways between the aboveground and underground in response to drought stress. Little is known regarding the coordinated response of aboveground and underground tissues of common vetch to drought stress. RESULTS: Our results showed that a total of 30,427 full-length transcripts were identified in 12 samples, with an average length of 2278.89 bp. Global transcriptional profiles of the above 12 samples were then analysed via Illumina-Seq. A total of 3464 and 3062 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Gene Ontology (GO) enrichment analyses identified that the dehydrin genes and Δ1-pyrroline-5-carboxylate synthase were induced for the biosynthesis of proline and water conservation. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results indicated that the DEGs were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and arginine and proline metabolism, and various drought response candidate genes were also identified. Abscisic acid (ABA; the AREB/ABF-SnRK2 pathway) regulates the activity of AMY3 and BAM1 to induce starch degradation in leaves and increase carbon export to roots, which may be associated with the drought stress responses in common vetch. Among the co-induced transcription factors (TFs), AREB/ABF, bHLH, MYB, WRKY, and AP2/ERF had divergent expression patterns and may be key in the crosstalk between leaves and roots during adaption to drought stress. In transgenic yeast, the overexpression of four TFs increased yeast tolerance to osmotic stresses. CONCLUSION: The multipronged approach identified in the leaves and roots broadens our understanding of the coordinated mechanisms of drought response in common vetch, and further provides targets to improve drought resistance through genetic engineering.


Assuntos
Secas , Pressão Osmótica , Folhas de Planta/genética , Raízes de Plantas/genética , Vicia sativa/genética , Ácido Abscísico/metabolismo , Arginina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Prolina/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação para Cima
10.
BMC Plant Biol ; 20(1): 71, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054459

RESUMO

BACKGROUND: Common vetch (Vicia sativa L.) is a forage grain legume of high protein content and high nitrogen fixation, relevant in sustainable agriculture systems. Drought is the main limiting factor of this crop yield. Genetic resources collections are essential to provide genetic variability for breeding. The analysis of drought associated parameters has allowed us to identify drought tolerant and sensitive ecotypes in a vetch core collection. RESULTS: To understand the mechanisms involved in drought response we analysed transcriptomic differences between tolerant and sensitive accessions. Polymorphic variants (SNPs and SSRs) in these differential expressed genes (DEGs) have also been analysed for the design of drought-associated markers. A total of 1332 transcripts were commonly deregulated in both genotypes under drought. To know the drought adaptive response, we also analysed DEGs between accessions. A total of 2646 transcripts are DEG between sensitive and tolerant ecotypes, in watered and drought conditions, including important genes involved in redox homeostasis, cell wall modifications and stress-response. The integration of this functional and genetic information will contribute to understand the molecular mechanisms of drought response and the adaptive mechanisms of drought tolerance in common vetch. The identification of polymorphic variants in these DEGs has also been screened for the design of drought-associated markers that could be used in future breeding program strategies. CONCLUSIONS: Our studies shed light for the first time in common vetch about the genes and pathways associated with drought tolerance. In addition, we identify over 100 potential drought associated polymorphism, as SNPs or SSRs, which are differently present in drought and tolerant genotypes. The use of these molecular markers for trait prediction would enable the development of genomic tools for future engineering strategies by screening of germplasm crop collections for traits related with crop drought resilience, adaptability or yield in vetch.


Assuntos
Secas , Genótipo , Melhoramento Vegetal , Polimorfismo Genético , Vicia sativa/fisiologia , Genes de Plantas , Vicia sativa/genética
11.
Cell Mol Biol (Noisy-le-grand) ; 65(3): 18-24, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30942152

RESUMO

Salinity is one of the most important abiotic stress factors that is expanding its influence because of global climate change and global warming. It causes gene expression changes, a reduction in seed germination and related characteristics, and poor seedling establishment in many crop plants by creating a lower osmotic potential in the seedbed and/or toxic ion effects in germinated seeds. In recent years, seed priming has been considered a promising strategy in modern stress management to protect plants against stress conditions. This study was conducted to elucidate the effects of osmopriming with polyethylene glycol 6000 (PEG-6000) on seed germination, seedling growth and gene expression in the common vetch (Vicia sativa L.) in different saline conditions. Common vetch seeds were primed with PEG-6000 solutions having different osmotic potentials (0.00, -0.50,  -0.75, -1.00, -1.25, and -1.50 MPa) for 12 hours. Control (un-primed) and primed seeds were germinated and seedlings were grown in different saline conditions (EC= zero, 4, 8 and 16 dS m-1). Furthermore, gene expression was compared in the primed seedlings in two different osmotic potentials (0.00 and -1.50 MPa) by microarray technology. Results demonstrated that germination percentage of common vetch seeds and seedling growth were diminished by high salinity. However, several priming treatments alleviated the adverse effects of high salinity on germination and early seedling growth of common vetch. The microarray showed that the expression of many genes in both stress and normal conditions was not significantly different.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Salinidade , Estresse Salino , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vicia sativa/genética , Vicia sativa/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/genética , Vicia sativa/efeitos dos fármacos
12.
DNA Cell Biol ; 38(4): 374-384, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30807211

RESUMO

Aquaporins (AQPs) are transmembrane channels that are essential for the movement of water and other small molecules between biofilms in various physiological processes in plants. In this study, based on transcriptome-wide data, we identified and described a total of 21 AQP genes in common vetch (Vicia sativa subsp. sativa), which is an economically important pasture legume worldwide. Based on phylogenetic analyses, the VsAQPs were sorted into four subfamilies, including four plasma membrane intrinsic proteins (PIPs), six tonoplast intrinsic proteins (TIPs), seven NOD26-like intrinsic proteins, and four small basic intrinsic proteins. Furthermore, chemical and physical properties of these VsAQPs, including the isoelectric point and theoretical molecular weight, were analyzed. Analyses of the AQP signature sequences and key residues indicated the substrate specificity of each VsAQP. A set of VsAQPs was selected for gene expression analysis in a number of tissues and after drought stress treatments using real-time quantitative reverse transcription/polymerase chain reaction assays. Most of the PIPs and TIPs were proposed to have critical roles in regulating the flow of water during drought stress. Heterologous expression experiments in yeast indicated that VsPIP1;2 and VsPIP2;2 are key candidate genes for improving drought stress tolerance. The results reported in this study could be a crucial resource for further practical analyses and for genetic improvement of drought stress tolerance in common vetch.


Assuntos
Aquaporinas/genética , Secas , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Vicia sativa/genética , Vicia sativa/fisiologia , Sequência de Aminoácidos , Aquaporinas/química , Aquaporinas/metabolismo , Sequência Conservada , Filogenia
13.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650531

RESUMO

The common vetch (Vicia sativa) is often used as feed for livestock because of its high nutritional value. However, drought stress reduces forage production through plant damage. Here, we studied the transcriptional profiles of common vetch exposed to drought in order to understand the molecular mechanisms of drought tolerance in this species. The genome of the common vetch has not been sequenced, therefore we used Illumina sequencing to generate de novo transcriptomes. Nearly 500 million clean reads were used to generate 174,636 transcripts, including 122,299 unigenes. In addition, 5313 transcription factors were identified and these transcription factors were classified into 79 different gene families. We also identified 11,181 SSR loci from di- to hexa-nucleotides whose repeat number was greater than five. On the basis of differentially expressed genes, Gene Ontology analysis identified many drought-relevant categories, including "oxidation-reduction process", "lipid metabolic process" and "oxidoreductase activity". In addition to these, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified pathways, such as "Plant hormone signal transduction", "Glycolysis/Gluconeogenesis" and "Phenylpropanoid biosynthesis", as differentially expressed in the plants exposed to drought. The expression results in this study will be useful for further extending our knowledge on the drought tolerance of common vetch.


Assuntos
Adaptação Fisiológica/genética , Secas , Genes de Plantas , Estudos de Associação Genética , Análise de Sequência de DNA/métodos , Vicia sativa/genética , Vicia sativa/fisiologia , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Transcriptoma/genética
14.
Molecules ; 22(4)2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362323

RESUMO

Common vetch (Vicia sativa subsp. sativa L.) is a self-pollinating annual forage legume with worldwide importance. Here, we investigate the optimal number of individuals that may represent the genetic diversity of a single population, using Start Codon Targeted (SCoT) markers. Two cultivated varieties and two wild accessions were evaluated using five SCoT primers, also testing different sampling sizes: 1, 2, 3, 5, 8, 10, 20, 30, 40, 50, and 60 individuals. The results showed that the number of alleles and the Polymorphism Information Content (PIC) were different among the four accessions. Cluster analysis by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and STRUCTURE placed the 240 individuals into four distinct clusters. The Expected Heterozygosity (HE) and PIC increased along with an increase in sampling size from 1 to 10 plants but did not change significantly when the sample sizes exceeded 10 individuals. At least 90% of the genetic variation in the four germplasms was represented when the sample size was 10. Finally, we concluded that 10 individuals could effectively represent the genetic diversity of one vetch population based on the SCoT markers. This study provides theoretical support for genetic diversity, cultivar identification, evolution, and marker-assisted selection breeding in common vetch.


Assuntos
Códon de Iniciação/genética , Variação Genética , Vicia sativa/genética , Alelos , Análise por Conglomerados , Ecótipo , Marcadores Genéticos , Genética Populacional , Heterozigoto , Polimorfismo Genético , Tamanho da Amostra
15.
Molecules ; 20(1): 1543-50, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25608853

RESUMO

The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions of South America and tropical Africa. The use of simple sequence repeat (SSR) markers for Vicia species has not been investigated as extensively as for other crop species. In this study, we assessed the potential for cross-species amplification of cDNA microsatellite markers developed from common vetch (Vicia sativa subsp. sativa). For cross-species amplification of the SSRs, amplification was carried out with genomic DNA isolated from two to eight accessions of 22 different Vicia species. For individual species or subspecies, the transferability rates ranged from 33% for V. ervilia to 82% for V. sativa subsp. nigra with an average rate of 52.0%. Because the rate of successful SSR marker amplification generally correlates with genetic distance, these SSR markers are potentially useful for analyzing genetic relationships between or within Vicia species.


Assuntos
Repetições de Microssatélites/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Vicia sativa/genética , Vicia/genética , Marcadores Genéticos , Filogenia , Especificidade da Espécie
16.
Molecules ; 19(5): 5777-89, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24802988

RESUMO

The common vetch (Vicia sativa subsp. sativa), a self-pollinating and diploid species, is one of the most important annual legumes in the world due to its short growth period, high nutritional value, and multiple usages as hay, grain, silage, and green manure. The available simple sequence repeat (SSR) markers for common vetch, however, are insufficient to meet the developing demand for genetic and molecular research on this important species. Here, we aimed to develop and characterise several polymorphic EST-SSR markers from the vetch Illumina transcriptome. A total number of 1,071 potential EST-SSR markers were identified from 1025 unigenes whose lengths were greater than 1,000 bp, and 450 primer pairs were then designed and synthesized. Finally, 95 polymorphic primer pairs were developed for the 10 common vetch accessions, which included 50 individuals. Among the 95 EST-SSR markers, the number of alleles ranged from three to 13, and the polymorphism information content values ranged from 0.09 to 0.98. The observed heterozygosity values ranged from 0.00 to 1.00, and the expected heterozygosity values ranged from 0.11 to 0.98. These 95 EST-SSR markers developed from the vetch Illumina transcriptome could greatly promote the development of genetic and molecular breeding studies pertaining to in this species.


Assuntos
Etiquetas de Sequências Expressas , Repetições de Microssatélites/genética , Vicia sativa/genética , Alelos , Marcadores Genéticos , Polimorfismo Genético , Análise de Sequência de DNA
17.
Pestic Biochem Physiol ; 111: 19-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24861929

RESUMO

Alterations on growth, amino acids metabolism and some antioxidant enzyme activities as result of imazamox treatment were examined in determinate and indeterminate nodules, formed by Phaseolus vulgaris and Vicia sativa, respectively. Young seedlings of both legumes were inoculated with their respective microsymbionts and grown under controlled conditions. At vegetative growth, plants were treated with imazamox (250µM) in the nutrient solution and harvested 7days after. Imazamox was mainly accumulated in V. sativa where concentrations were more than six fold higher than those detected in P. vulgaris. Nodule dry weight and total nitrogen content were reduced by the herbicide treatment: the highest decrease of nodule biomass (50%) and nitrogen content (40%) were registered in V. sativa and P. vulgaris, respectively. The concentration of branched-chain amino acids (BCAA) did not change in neither determinate nor indeterminate nodules even though the acetohydroxyacid synthase activity decreased in root and nodules of both symbioses with the herbicide application. Based on this last result and taking into account that total free amino acids increased in roots but not in nodules of common vetch, a possible BCAA translocation from root to nodule could occur. Our results suggest that the maintenance of BCAA balance in nodule become a priority for the plant in such conditions. The involvement of activities glutathione-S-transferase, guaiacol peroxidase and superoxide dismutase in the response of the symbioses to imazamox are also discussed.


Assuntos
Herbicidas/farmacologia , Imidazóis/farmacologia , Phaseolus/efeitos dos fármacos , Nódulos Radiculares de Plantas/efeitos dos fármacos , Vicia sativa/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Vicia sativa/efeitos dos fármacos , Vicia sativa/genética , Vicia sativa/crescimento & desenvolvimento
18.
Molecules ; 18(7): 8376-92, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23863776

RESUMO

Vetch (Vicia sativa L.) is one of the most important annual forage legumes in the World due to its multiple uses (i.e., hay, grain, silage and green manure) and high nutritional value. However, detrimental cyanoalanine toxins in its plant parts including seeds and its vulnerability to hard winter conditions are currently reducing the agronomic values of vetch varieties. Moreover, the existence in the public domain of very few genomic resources, especially molecular markers, has further hampered breeding efforts. Polymorphic simple sequence repeat markers from transcript sequences (cDNA; simple sequence repeat [SSR]) were developed for Vicia sativa subsp. sativa. We found 3,811 SSR loci from 31,504 individual sequence reads, and 300 primer pairs were designed and synthesized. In total, 65 primer pairs were found to be consistently scorable when 32 accessions were tested. The numbers of alleles ranged from 2 to 19, frequency of major alleles per locus were 0.27-0.87, the genotype number was 2-19, the overall polymorphism information content (PIC) values were 0.20-0.86, and the observed and expected heterozygosity values were 0.00-0.41 and 0.264-0.852, respectively. These markers provide a useful tool for assessing genetic diversity, population structure, and positional cloning, facilitating vetch breeding programs.


Assuntos
DNA Complementar/genética , Repetições de Microssatélites/genética , Vicia sativa/genética , Alelos , Sequência de Bases , DNA Complementar/análise , Marcadores Genéticos/genética , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético/genética , Análise de Sequência de DNA
19.
PLoS One ; 8(2): e57338, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437373

RESUMO

BACKGROUND: Vicia sativa (the common vetch) possesses a predominant zygomorphic flower and belongs to the subfamily Papilionoideae, which is related to Arabidopsis thaliana in the eurosid II clade of the core eudicots. Each vetch flower consists of 21 concentrically arranged organs: the outermost five sepals, then five petals and ten stamens, and a single carpel in the center. METHODOLOGY/PRINCIPAL FINDINGS: We explored the floral transcriptome to examine a genome-scale genetic model of the zygomorphic flower of vetch. mRNA was obtained from an equal mixture of six floral organs, leaves and roots. De novo assembly of the vetch transcriptome using Illumina paired-end technology produced 71,553 unigenes with an average length of 511 bp. We then compared the expression changes in the 71,553 unigenes in the eight independent organs through RNA-Seq Quantification analysis. We predominantly analyzed gene expression patterns specific to each floral organ and combinations of floral organs that corresponded to the traditional ABC model domains. Comparative analyses were performed in the floral transcriptomes of vetch and Arabidopsis, and genomes of vetch and Medicago truncatula. CONCLUSIONS/SIGNIFICANCE: Our comparative analysis of vetch and Arabidopsis showed that the vetch flowers conform to a strict ABC model. We analyzed the evolution and expression of the TCP gene family in vetch at a whole-genome level, and several unigenes specific to three different vetch petals, which might offer some clues toward elucidating the molecular mechanisms underlying floral zygomorphy. Our results provide the first insights into the genome-scale molecular regulatory network that controls the evolution and development of the zygomorphic flower in Papilionoideae.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Raízes de Plantas/genética , Transcriptoma , Vicia sativa/genética , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Evolução Biológica , Flores/classificação , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Folhas de Planta/classificação , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Vicia sativa/classificação , Vicia sativa/crescimento & desenvolvimento
20.
Plant Foods Hum Nutr ; 66(3): 254-60, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21717187

RESUMO

In order to increase knowledge of seed nutritive value and to demonstrate its relationship in common vetch (Vicia sativa L.) germplasm, 388 common vetch accessions were grown under field conditions in 2008-2009 growing season in Bursa province of Turkey. Seeds were analyzed for seed minerals (Ca, Cu, Mg, Mn, P, S, Zn and K) and crude protein (CP) content. The accessions were grouped according to testa and cotyledon color and seed size, and the results were evaluated by analysis of variance to determine relationships between minerals and CP content, testa and cotyledon colors, and seed weight. In general, there was no significant difference between testa colors or cotyledon colors in minerals and CP content. However, seed weight was closely associated with minerals and CP contents in this study. Analysis of variance and correlation analysis showed that seed weight was closely associated with some minerals and CP content. The small seeds had significantly higher Ca, Cu, Mg, Mn, S, Zn and CP contents than medium and large seeds.


Assuntos
Proteínas Alimentares/análise , Minerais/análise , Proteínas de Plantas/análise , Sementes/química , Oligoelementos/análise , Vicia sativa/química , Análise de Variância , Cor , Cotilédone , Valor Nutritivo , Sementes/anatomia & histologia , Turquia , Vicia sativa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA