Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 15(6): e0234385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603327

RESUMO

Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation capture baits can provide the opportunity for recovering mitochondrial sequences from all its descendent and even sister lineages. This approach is useful for taxa with no extant close relatives, as is often the case for rare or extinct species, and is a viable approach for the analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this situation, being rare Southeast Asian carnivores for which little molecular data is available. Using ancestral capture we recover partial mitochondrial genome sequences for seven banded linsangs (P. linsang) from historical specimens, representing the first intraspecific genetic dataset for this species. We additionally assemble a high quality mitogenome for the banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardicolor), with an estimated divergence of ~12 million years (Ma). Although our sample size precludes any robust interpretation of the population structure of the banded linsang, we recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility of ancestral capture for studying divergent taxa without close relatives.


Assuntos
Genoma Mitocondrial , Viverridae/genética , Animais , Sudeste Asiático , DNA Mitocondrial/genética , DNA Mitocondrial/história , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Extinção Biológica , Fósseis/história , Especiação Genética , História Antiga , Filogenia , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Viverridae/classificação
2.
J Hered ; 108(3): 270-279, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940474

RESUMO

The biogeographic dynamics affecting the Indian subcontinent, East and Southeast Asia during the Plio-Pleistocene has generated complex biodiversity patterns. We assessed the molecular biogeography of the small Indian civet (Viverricula indica) through mitogenome and cytochrome b + control region sequencing of 89 historical and modern samples to (1) establish a time-calibrated phylogeography across the species' native range and (2) test introduction scenarios to western Indian Ocean islands. Bayesian phylogenetic analyses identified 3 geographic lineages (East Asia, sister-group to Southeast Asia and the Indian subcontinent + northern Indochina) diverging 3.2-2.3 million years ago (Mya), with no clear signature of past demographic expansion. Within Southeast Asia, Balinese populations separated from the rest 2.6-1.3 Mya. Western Indian Ocean populations were assigned to the Indian subcontinent + northern Indochina lineage and had the lowest mitochondrial diversity. Approximate Bayesian computation did not distinguish between single versus multiple introduction scenarios. The early diversification of the small Indian civet was likely shaped by humid periods in the Late Pliocene-Early Pleistocene that created evergreen rainforest barriers, generating areas of intra-specific endemism in the Indian subcontinent, East, and Southeast Asia. Later, Pleistocene dispersals through drier conditions in South and Southeast Asia were likely, giving rise to the species' current natural distribution. Our molecular data supported the delineation of only 4 subspecies in V. indica, including an endemic Balinese lineage. Our study also highlighted the influence of prefirst millennium AD introductions to western Indian Ocean islands, with Indian and/or Arab traders probably introducing the species for its civet oil.


Assuntos
Filogenia , Filogeografia , Viverridae/classificação , Viverridae/genética , Animais , Citocromos b/genética , DNA Mitocondrial , Evolução Molecular , Frequência do Gene , Variação Genética , Genoma Mitocondrial , Haplótipos , Ilhas do Oceano Índico
3.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1650-1, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25228374

RESUMO

The complete mitochondrial genome of Viverricula indica taivana, exclusive of tandem repeats within the control region, is 16,583 bp in length, with a total base composition of: 33.18% A, 28.93% T, 24.88% C, and 13.00% G in H-strand. The genome contains 37 genes, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and 1 control region.


Assuntos
Genoma Mitocondrial/genética , Viverridae/genética , Animais , Composição de Bases/genética , DNA Mitocondrial/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem/genética , Viverridae/classificação
4.
Cytogenet Genome Res ; 137(2-4): 174-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22889959

RESUMO

The order of Carnivora has been very well characterized with over 50 species analyzed by chromosome painting and with painting probe sets made for 9 Carnivora species. Representatives of almost all families have been studied with few exceptions (Otariidae, Odobenidae, Nandiniidae, Prionodontidae). The patterns of chromosome evolution in Carnivora are discussed here. Overall, many Carnivora species retained karyotypes that only slightly differ from the ancestral carnivore karyotype. However, there are at least 3 families in which the ancestral carnivore karyotype has been severely rearranged - Canidae, Ursidae and Mephitidae. Here we report chromosome painting of yet another Carnivora species with a highly rearranged karyotype, Genetta pardina. Recurrent rearrangements make it difficult to define the ancestral chromosomal arrangement in several instances. Only 2 species of pangolins (Pholidota), a sister order of Carnivora, have been studied by chromosome painting. Future use of whole-genome sequencing data is discussed in the context of solving the questions that are beyond resolution of conventional banding techniques and chromosome painting.


Assuntos
Carnívoros/classificação , Carnívoros/genética , Animais , Canidae/classificação , Canidae/genética , Gatos , Coloração Cromossômica , Cromossomos de Mamíferos/genética , Cães , Evolução Molecular , Felidae/classificação , Felidae/genética , Feminino , Humanos , Cariótipo , Masculino , Mephitidae/classificação , Mephitidae/genética , Mustelidae/classificação , Mustelidae/genética , Filogenia , Procyonidae/classificação , Procyonidae/genética , Especificidade da Espécie , Ursidae/classificação , Ursidae/genética , Viverridae/classificação , Viverridae/genética
5.
Mol Phylogenet Evol ; 47(3): 883-92, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18434210

RESUMO

The Viverridae (Mammalia, Carnivora), one of the least studied groups of carnivorans, include two subfamilies of Asian palm civets: Hemigalinae and Paradoxurinae. The relationships between and within these two subfamilies have never been thoroughly tested using an extensive molecular sample set. In this study, we gathered sequences of four genes (two mitochondrial: Cytochrome b and ND2 and two nuclear: beta-fibrinogen intron 7 and IRBP exon 1) for eight of the eleven extant species representing these two subfamilies. The results showed that: (1) the Asian palm civets (Hemigalinae and Paradoxurinae) have a single origin and form the sister-group of the (Genettinae+Viverrinae) clade, (2) the Hemigalinae (including the otter civet Cynogale bennettii) are monophyletic, (3) the Paradoxurinae are monophyletic and (4) the small-toothed palm civet (Arctogalidia trivirgata) is an early offshoot within the Paradoxurinae. Using a relaxed molecular clock analysis, the differentiation of the (Hemigalinae+Paradoxurinae) was inferred to occur in the Late Oligocene/Early Miocene.


Assuntos
Filogenia , Viverridae/genética , Animais , Ásia , Teorema de Bayes , Citocromos b/genética , Éxons/genética , Fibrinogênio/genética , Variação Genética , Íntrons/genética , Análise de Sequência de DNA , Fatores de Tempo , Viverridae/classificação
6.
Mol Phylogenet Evol ; 41(2): 266-78, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16837215

RESUMO

We reconstructed the phylogeny of the subfamily Viverrinae (Mammalia, Carnivora, Viverridae) using a approximately 3kb data set in order to reassess timing and patterns of faunal exchanges between Asia and Africa. Maximum parsimony, maximum likelihood, and Bayesian analyses of separated and combined matrices (cytochrome b, transthyretin intron I and IRBP exon 1 [IRBP1]) recovered all the well-supported relationships within feliformian lineages. In addition, IRBP1 supported paraphyly of genus Herpestes and contributed to the resolution of equivocal hypotheses within Viverridae, including (1) the monophyly of Viverrinae, and (2) Viverricula sister-group of the other terrestrial civets (Civettictis and Viverra). The combined analysis yielded a robust phylogeny, recovering monophyly of Prionodontidae and yielding high posterior probabilities for nodes (1) (Prionodontidae, Felidae) and (2) ((Felidae, Prionodontidae), ((Hyaenidae, (Herpestidae, Eupleridae)), Viverridae)). Using a fossil cross-validation method, we estimated the emergence of Viverridae at 34.29Myr, with a separation between the three traditional subfamilies Hemigalinae, Paradoxurinae, and Viverrinae during the Late Oligocene-Early Miocene. The terrestrial civets and the splits between (1) Civettictis and Viverra and (2) Poiana and Genetta were estimated to appear during the Middle Miocene. Parsimony- and maximum likelihood-based methods yielded unambiguous ancestral area reconstructions, including the Asian origin of the family Viverridae, the subfamily Viverrinae, the terrestrial civets and the clade (Civettictis, Viverra). On the grounds of genetic distances, morphological divergence, and divergence time estimates, we propose the erection of the subfamily Genettinae (including Genetta and Poiana). Our analyses suggested two independent migration events from Asia to Africa, during the Middle Miocene (Civettictis) and between the Late Oligocene and Middle Miocene (Genettinae). These results are in agreement with the hypothesis of Miocene routes from Asia to Africa-via the Arabian microplate-that would have involved several independent events of migrations. Couched in the context of the viverrid fossil record, our study calls for a revision of the paleontological data in order to fully appreciate the complexity of Afro-Asian faunal exchanges.


Assuntos
Evolução Biológica , Viverridae/classificação , Viverridae/genética , África , Animais , Ásia , Sequência de Bases , Carnívoros/genética , Citocromos b/genética , Éxons , Proteínas do Olho/genética , Fósseis , Genes Mitocondriais/genética , Íntrons , Filogenia , Pré-Albumina/genética , Proteínas de Ligação ao Retinol/genética , Alinhamento de Sequência
7.
Syst Biol ; 54(6): 865-94, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16282167

RESUMO

Adaptive convergence in morphological characters has not been thoroughly investigated, and the processes by which phylogenetic relationships may be misled by morphological convergence remains unclear. We undertook a case study on the morphological evolution of viverrid-like feliformians (Nandinia, Cryptoprocta, Fossa, Eupleres, Prionodon) and built the largest morphological matrix concerning the suborder Feliformia to date. A total of 349 characters grouped into four anatomical partitions were used for all species of Viverridae and viverrid-like taxa plus representatives of the Felidae, Hyaenidae, Herpestidae, and one Malagasy mongoose. Recent molecular phylogenetic analyses suggest that viverrid-like morphotypes appeared independently at least three times during feliformian evolution. We thus used a synthetic molecular tree to assess morphological evolutionary patterns characterizing the viverrid-like taxa. We examined phylogenetic signal, convergence and noise in morphological characters using (a) tree-length distribution (g1), (b) partitioned Bremer support, (c) RI values and their distribution, (d) respective contributions of diagnostic synapomorphies at the nodes for each partition, (e) patterns of shared convergences among viverrid-like taxa and other feliformian lineages, (f) tree-length differences among alternative hypotheses, and (g) the successive removal of convergent character states from the original matrix. In addition, the lability of complex morphological structures was assessed by mapping them onto the synthetic molecular tree. The unconstrained morphological analysis yielded phylogenetic groupings that closely reflected traditional classification. The use of a synthetic molecular tree (constraint) combined with our thorough morphological investigations revealed the mosaics of convergences likely to have contributed to part of the historical uncertainty over viverrid classification. It also showed that complex morphological structures could be subjected to reversible evolutionary trends. The morphological matrix proved useful in characterizing several feliformian clades with diagnostic synapomorphies. These results support the removal from the traditionally held Viverridae of several viverrid-like taxa into three distinct families: Nandiniidae (Nandinia), Prionodontidae (Prionodon), and the newly defined Eupleridae (including Cryptoprocta, Fossa, Eupleres plus all "mongoose-like" Malagasy taxa). No clearly "phylogenetically misleading" data subsets could be identified, and the great majority of morphological convergences appeared to be nonadaptive. The multiple approaches used in this study revealed that the most disruptive element with regards to morphological phylogenetic reconstruction was noise, which blured the expression of phylogenetic signal. This study demonstrates the crucial need to consider independent (molecular) phylogenies in order to produce reliable evolutionary hypotheses and should promote a new approach to the definition of morphological characters in mammals. [Constrained analysis; convergence; evolutionary scenario; Feliformia; morphology; noise; phylogenetic signal; phylogeny; Viverridae.].


Assuntos
Anatomia Comparada/métodos , Evolução Biológica , Pesos e Medidas Corporais/classificação , Filogenia , Viverridae/classificação , Animais , Biometria , Carnívoros/anatomia & histologia , Carnívoros/classificação , Especiação Genética , Modelos Estatísticos , Viverridae/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA