Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Sci ; 301: 110642, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218619

RESUMO

Withanolides constitute an extensive and vital class of metabolites displaying wide array of structural and therapeutic properties with unique side-chain modifications. These show diversified scaffolds and are promising pharmaceutical molecules with well documented anti-inflammatory and anti-cancer properties. Sterols are dynamic class of compounds and essential molecules having structural and functional significance. These contribute to the synthesis of withanolides by providing structural precursors. In this context, we have characterized sterol Δ22-desaturase from Withania somnifera and also functionally validating it by confirming its desaturase nature in conjunction with quantitative real-time expression profiling and metabolite evaluation. Further, transgenic hairy roots of W. somnifera displayed a higher accumulation of stigmasterol and withanolides. The increase in chemical constituents was concomitant with an increased gene copy number predicted via Southern blotting. Additionally, transgenic lines of tobacco over-expressing WsCYP710A11 displayed a substantial increase in its expression, corroborating well with enhanced stigmasterol content. Characterization of CYP710A11 from W. somnifera and its homologous transgenic expression has demonstrated its role in the regulation of withanolides biosynthesis. It also exhibited a differential transcriptional profile in response to exogenous elicitations. These empirical findings suggest the crucial role of CYP710A11 in stigmasterol biosynthesis. This in turn has implications for the overproduction of withanolides via pathway channelling.


Assuntos
Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Estigmasterol/metabolismo , Withania/enzimologia , Vitanolídeos/metabolismo , Expressão Gênica , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Nicotiana/química , Nicotiana/enzimologia , Nicotiana/genética , Withania/química , Withania/genética
2.
World J Microbiol Biotechnol ; 34(10): 150, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30255239

RESUMO

This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein-ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2-3 fold and 6-7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.


Assuntos
Glicosiltransferases/química , Glicosiltransferases/metabolismo , Mutagênese , Withania/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Flavonoides , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência , Homologia de Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 115(34): E8096-E8103, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082386

RESUMO

A large part of chemodiversity of plant triterpenes is due to the modification of their side chains. Reduction or isomerization of double bonds in the side chains is often an important step for the diversification of triterpenes, although the enzymes involved are not fully understood. Withanolides are a large group of structurally diverse C28 steroidal lactones derived from 24-methylenecholesterol. These compounds are found in the Indian medicinal plant Withania somnifera, also known as ashwagandha, and other members of the Solanaceae. The pathway for withanolide biosynthesis is unknown, preventing sustainable production via white biotechnology and downstream pharmaceutical usages. In the present study, based on genome and transcriptome data we have identified a key enzyme in the biosynthesis of withanolides: a DWF1 paralog encoding a sterol Δ24-isomerase (24ISO). 24ISO originated from DWF1 after two subsequent duplication events in Solanoideae plants. Withanolides and 24ISO appear only in the medicinal plants in the Solanoideae, not in crop plants such as potato and tomato, indicating negative selection during domestication. 24ISO is a unique isomerase enzyme evolved from a reductase and as such has maintained the FAD-binding oxidoreductase structure and requirement for NADPH. Using phylogenetic, metabolomic, and gene expression analysis in combination with heterologous expression and virus-induced gene silencing, we showed that 24ISO catalyzes the conversion of 24-methylenecholesterol to 24-methyldesmosterol. We propose that this catalytic step is the committing step in withanolide biosynthesis, opening up elucidation of the whole pathway and future larger-scale sustainable production of withanolides and related compounds with pharmacological properties.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Proteínas de Plantas , Esteroide Isomerases , Withania , Vitanolídeos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Esteroide Isomerases/biossíntese , Esteroide Isomerases/genética , Withania/enzimologia , Withania/genética
4.
Physiol Plant ; 160(3): 297-311, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28299798

RESUMO

Heat is a major environmental stress factor that confines growth, productivity, and metabolism of plants. Plants respond to such unfavorable conditions through changes in their physiological, biochemical and developmental processes. Withania somnifera, an important medicinal plant, grows in hot and dry conditions, however, molecular mechanisms related to such adaptive properties are not known. Here, we elucidated that members of the sterol glycosyltransferases (SGT) gene family play important roles in the survival of W. somnifera under adverse conditions through maintaining the integrity of the membrane. SGTs are enzymes involved in sterol modifications and participate in metabolic flexibility during stress. Silencing of WsSGT members, for instance WsSGTL1, WsSGTL2 and WsSGTL4, was inimical for important physiological parameters, such as electron transport rate, photochemical quantum yield, acceptor side limitation, non-photochemical quenching (NPQ), Fv/Fm and net photosynthetic rate, whereas stomatal conductance, transpiration rate and dark respiration rates (Rds) were increased. Decreased NPQ and increased Rds helped to generate significant amount of ROS in the Wsamisgt lines. After heat stress, H2 O2 , lipid peroxidation and nitric oxide production increased in the Wsamisgt lines due to high ROS generation. The expression of HSPs in Wsamisgt lines might be involved in regulation of physiological processes during stress. We have also observed increased proline accumulation which might be involved in restricting water loss in the Wsamisgt lines. Taken together, our observations revealed that SGTL enzyme activity is required to maintain the internal damages of the cell against high temperature by maintaining the sterol vs sterol glycosides ratio in the membranes of W. somnifera.


Assuntos
Adaptação Fisiológica/fisiologia , Glicosiltransferases/metabolismo , Temperatura , Withania/enzimologia , Adaptação Fisiológica/genética , Glicosiltransferases/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Withania/metabolismo , Withania/fisiologia
5.
Int J Biol Macromol ; 98: 847-854, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28202335

RESUMO

Withania coagulans fruit has traditionally been used as milk coagulant. The present study reports the purification and characterization of an aspartic protease from W. coagulans fruit. The enzyme was purified via fractional ammonium sulfate precipitation and cation exchange chromatography. SDS-PAGE analysis revealed the presence of a monomeric protein with molecular weight of 31kDa. Proteolytic activity (PA) of the protease was evaluated using casein, and the milk-clotting activity (MCA) was analyzed by skim milk. The Km and Vmax values of the enzyme for casein were obtained to be 1.29mg/ml and 0.035µmol Tyr/min, respectively. Optimal temperature and pH were 65°C and 5.5, respectively. After incubation of enzyme at 65°C for 1h, 73% of PA was remained which demonstrated high thermal stability of the enzyme. Mass spectrometry analysis of the purified protease and enzyme assays in the presence of protease inhibitors indicated that aspartic protease was the only responsible enzyme in milk coagulation. Furthermore, by investigating the effect of salts on enzyme activity, it was observed that both NaCl and CaCl2 reduced enzyme activity. These characteristics of the protease suggest that the enzyme may be suitable for producing low salt content cheeses.


Assuntos
Ácido Aspártico Endopeptidases/isolamento & purificação , Ácido Aspártico Proteases/isolamento & purificação , Caseínas/química , Animais , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Proteases/química , Bovinos , Estabilidade Enzimática , Frutas/enzimologia , Hidrólise , Leite/química , Peso Molecular , Withania/enzimologia
6.
Protoplasma ; 254(1): 181-192, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26795344

RESUMO

Tryptophan decarboxylase (EC 4.1.1.28) catalyzes pyridoxal 5'-phosphate (PLP)-dependent decarboxylation of tryptophan to produce tryptamine for recruitment in a myriad of biosynthetic pathways of metabolites possessing indolyl moiety. A recent report of certain indolyl metabolites in Withania species calls for a possible predominant functional role of tryptophan decarboxylase (TDC) in the genome of Withania species to facilitate production of the indolyl progenitor molecule, tryptamine. Therefore, with this metabolic prospection, we have identified and cloned a full-length cDNA sequence of TDC from aerial tissues of Withania coagulans. The functional WcTDC gene comprises of 1506 bp open reading frame (ORF) encoding a 502 amino acid protein with calculated molecular mass and pI value of 56.38 kDa and 8.35, respectively. The gene was expressed in Escherichia coli, and the recombinant enzyme was affinity-purified to homogeneity to discern its kinetics of catalysis. The enzyme (WcTDC) exhibited much higher Km value for tryptophan than for pyridoxal 5'-phosphate and was dedicated to catalyze decarboxylation of only tryptophan or, to a limited extent, of its analogue (like 5-hydroxy tryptophan). The observed optimal catalytic functionality of the enzyme on the slightly basic side of the pH scale and at slightly higher temperatures reflected adaptability of the plant to hot and arid regions, the predominant natural habitat of the herb. This pertains to be the first report on cloning and characterization of heterologously expressed recombinant enzyme from W. coagulans and forms a starting point to further understanding of withanamide biosynthesis.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/genética , Expressão Gênica , Proteínas Recombinantes/metabolismo , Withania/enzimologia , Withania/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Sequência de Bases , Biocatálise/efeitos dos fármacos , Clonagem Molecular , Biologia Computacional , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Isopropiltiogalactosídeo/farmacologia , Cinética , Modelos Moleculares , Filogenia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Homologia Estrutural de Proteína , Especificidade por Substrato/efeitos dos fármacos , Temperatura , Withania/efeitos dos fármacos
7.
Plant Cell Rep ; 35(1): 195-211, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518426

RESUMO

KEY MESSAGE: Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3ß-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and tolerance to both biotic and abiotic stresses.


Assuntos
Glucosiltransferases/metabolismo , Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Withania/enzimologia , Vitanolídeos/metabolismo , Animais , Antocianinas/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Glucosiltransferases/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Spodoptera/fisiologia , Triterpenos/metabolismo , Withania/genética , Withania/fisiologia
8.
Plant Signal Behav ; 10(12): e1078064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357855

RESUMO

Sterol glycosyltransferases (SGTs) belong to family 1 of glycosyltransferases (GTs) and are enzymes responsible for synthesis of sterol-glucosides (SGs) in many organisms. WsSGTL1 is a SGT of Withania somnifera that has been found associated with plasma membranes. However its biological function in W.somnifera is largely unknown. In the present study, we have demonstrated through RNAi silencing of WsSGTL1 gene that it performs glycosylation of withanolides and sterols resulting in glycowithanolides and glycosylated sterols respectively, and affects the growth and development of transgenic W.somnifera. For this, RNAi construct (pFGC1008-WsSGTL1) was made and genetic transformation was done by Agrobacterium tumefaciens. HPLC analysis depicts the reduction of withanoside V (the glycowithanolide of W.somnifera) and a large increase of withanolides (majorly withaferin A) content. Also, a significant decrease in level of glycosylated sterols has been observed. Hence, the obtained data provides an insight into the biological function of WsSGTL1 gene in W.somnifera.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Interferência de RNA , Withania/enzimologia , Withania/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/metabolismo , Glicosilação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regeneração , Esteróis/biossíntese , Transformação Genética , Withania/genética , Vitanolídeos/metabolismo
9.
Plant Biotechnol J ; 13(9): 1287-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25809293

RESUMO

Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (ß-amyrin synthase) and ß-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves.


Assuntos
Farnesil-Difosfato Farnesiltransferase/fisiologia , Estresse Fisiológico/genética , Withania/genética , Vitanolídeos/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Inativação Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Oxirredutases/genética , Oxirredutases/fisiologia , Folhas de Planta/metabolismo , Estresse Fisiológico/fisiologia , Withania/enzimologia , Withania/metabolismo , Withania/fisiologia
10.
Protoplasma ; 252(6): 1421-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25687294

RESUMO

Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control various pathways involving such metabolic reactions in the plant. As a representative experimental validation of this notion, WSCYP93Id was heterologouly expressed in Escherichia coli and catalytic capabilities of the recombinant WSCYP93Id protein were evaluated using withanolides as substrates. Optimized assays with some major withanolides (withanone, withaferin A and withanolide A) involving spectrophotometric as well as high-pressure liquid chromatography (HPLC)-based evaluation (product detection) of the reactions showed conversion of withaferin A to a hydroxylated product. The genes belonging to other CYP group are possibly involved in some specialised synthesis such as that of brassinosteroids.


Assuntos
Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Indolacéticos/farmacologia , Luz , Modelos Moleculares , Proteínas de Plantas/metabolismo , Withania/enzimologia , Biotransformação , Biologia Computacional , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Bases de Dados Genéticas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroxilação , Isoenzimas , Filogenia , Proteínas de Plantas/genética , Plantas Medicinais , Conformação Proteica , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Relação Estrutura-Atividade , Especificidade por Substrato , Withania/efeitos dos fármacos , Withania/genética , Withania/efeitos da radiação , Vitanolídeos/metabolismo
11.
Protoplasma ; 252(6): 1439-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25691002

RESUMO

Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.


Assuntos
Aclimatação , Secas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Fotossíntese/genética , Proteínas de Plantas/genética , Withania/genética , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Osmorregulação/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais , Estresse Fisiológico , Fatores de Tempo , Withania/enzimologia , Vitanolídeos/metabolismo
12.
BMC Biotechnol ; 14: 89, 2014 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-25416924

RESUMO

BACKGROUND: Pharmacological investigations position withanolides as important bioactive molecules demanding their enhanced production. Therefore, one of the pivotal aims has been to gain knowledge about complete biosynthesis of withanolides in terms of enzymatic and regulatory genes of the pathway. However, the pathway remains elusive at the molecular level. P450s monooxygenases play a crucial role in secondary metabolism and predominantly help in functionalizing molecule core structures including withanolides. RESULTS: In an endeavor towards identification and characterization of different P450s, we here describe molecular cloning, characterization and expression analysis of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera. Full length cDNAs of WsCYP98A and WsCYP76A have open reading frames of 1536 and 1545 bp encoding 511 (58.0 kDa) and 515 (58.7 kDa) amino acid residues, respectively. Entire coding sequences of WsCYP98A and WsCYP76A cDNAs were expressed in Escherichia coli BL21 (DE3) using pGEX4T-2 expression vector. Quantitative real-time PCR analysis indicated that both genes express widely in leaves, stalks, roots, flowers and berries with higher expression levels of WsCYP98A in stalks while WsCYP76A transcript levels were more obvious in roots. Further, transcript profiling after methyl jasmonate, salicylic acid, and gibberellic acid elicitations displayed differential transcriptional regulation of WsCYP98A and WsCYP76A. Copious transcript levels of both P450s correlated positively with the higher production of withanolides. CONCLUSIONS: Two A-types P450 WsCYP98A and WsCYP76A were isolated, sequenced and heterologously expressed in E. coli. Both P450s are spatially regulated at transcript level showing differential tissue specificity. Exogenous elicitors acted as both positive and negative regulators of mRNA transcripts. Methyl jasmonate and salicylic acid resulted in copious expression of WsCYP98A and WsCYP76A. Enhanced mRNA levels also corroborated well with the increased accumulation of withanolides in response to elicitations. The empirical findings suggest that elicitors possibly incite defence or stress responses of the plant by triggering higher accumulation of withanolides.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Withania/enzimologia , Acetatos/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Dados de Sequência Molecular , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Salicilatos/farmacologia , Alinhamento de Sequência , Withania/classificação , Withania/efeitos dos fármacos , Withania/genética , Vitanolídeos/metabolismo
13.
J Photochem Photobiol B ; 140: 332-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25226342

RESUMO

The present study aims to investigate the effects of supplemental ultraviolet B (3.6 kJ m(-2)day(-1) above ambient) radiation on secondary metabolites and phenylpropanoid pathway enzymes of Withania somnifera under field conditions at 40, 70, and 100 days after transplantation. Secondary metabolites' (alkaloids, anthocyanins, carotenoids, flavonoids, lignin, phytosterols, saponins, and tannins) concentrations were analysed at the end of the treatments. Activities of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR) were also determined. In treated plants, secondary metabolite-concentrations generally increased (higher concentrations being recorded in roots compared to leaves). Anomalies were recorded for lycopene in roots and phytosterols in leaves (all sampling ages); ß-carotene declined in leaves at third sampling age. s-UV-B-treated plants depicted decrease in withanolide A content with concomitant increase in withaferin A (two major alkaloids analysed by HPLC) compared to their respective controls. Phenylpropanoid pathway enzyme-activities increased in leaves and roots under s-UV-B treatment, the latter showing greater increase. The study concludes that s-UV-B is a potent factor in increasing the concentrations of secondary metabolites and their biosynthetic pathway enzymes in W. somnifera.


Assuntos
Fenóis/metabolismo , Raios Ultravioleta , Withania/metabolismo , Withania/efeitos da radiação , Alcaloides/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Relação Dose-Resposta à Radiação , Lignina/metabolismo , Estresse Oxidativo/efeitos da radiação , Fitosteróis/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas Medicinais , Taninos/metabolismo , Withania/enzimologia
14.
Mol Biol Rep ; 41(11): 7201-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25106523

RESUMO

Solanaceae is an important family with several plants of medicinal importance. These medicinal plants have distinctive pathways for secondary metabolite biosynthesis. In most of the plants, two important compounds, dimethylallyl diphosphate and isopentenyl diphosphate, synthesize isoprenoid or terpenoids. Squalene synthase (SQS) is a key enzyme of the biosynthesis of isoprenoid (farnesyl pyrophosphate (FPP) â†’ squalene). Withania somnifera (ashwagandha), an important medicinal plant of family solanaceae produces withanolides. Withanolides are secondary metabolites synthesized through isoprenoid pathway. In this study, 13 SQS protein sequences from the plants of solanacae family and Arabidopsis thaliana were analyzed. The conserved domains in corresponding sequences were searched. The multiple sequence alignment of conserved domains revealed the important motifs and identified the residue substitution in each motif. Our result further indicated that residue substitution in motifs might not lead to functional variation, although it may affect the binding affinity of Mg(++), FPP and NAD(P)H. In addition, the homology modelling of SQS enzyme of W. somnifera was done for the prediction of three-dimensional structure. Molecular docking study of considered substrates with WsSQS was performed and the docked structure were analyzed further. The docked structures showed binding affinity for motif 2 of WsSQS. Our analysis revealed that 29 residues of motif 2 might be important for catalytic/functional activity of SQS enzyme of W. somnifera. This study may provide an understanding of metabolic pathways responsible for the production of secondary metabolites. The motifs may play a key role in regulating the pathway towards enhanced production of metabolites.


Assuntos
Sítios de Ligação/genética , Vias Biossintéticas/genética , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Filogenia , Withania/enzimologia , Sequência de Aminoácidos , Arabidopsis/enzimologia , Sequência de Bases , Análise por Conglomerados , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Estrutura Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Mol Biol Rep ; 41(11): 7323-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25085038

RESUMO

Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.


Assuntos
Vias Biossintéticas/genética , Biologia Computacional/métodos , Modelos Biológicos , Proteínas de Plantas/genética , Metabolismo Secundário/genética , Withania/genética , Vitanolídeos/química , Vias Biossintéticas/fisiologia , Proteínas de Plantas/metabolismo , Withania/enzimologia , Vitanolídeos/metabolismo
16.
Physiol Plant ; 152(4): 617-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24749735

RESUMO

Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta.


Assuntos
Colesterol/análogos & derivados , Eritritol/análogos & derivados , Ácido Mevalônico/metabolismo , Nicotiana/enzimologia , Fitosteróis/metabolismo , Fosfatos Açúcares/metabolismo , Withania/enzimologia , Vitanolídeos/metabolismo , Sequência de Bases , Vias Biossintéticas , Carbono/metabolismo , Colesterol/química , Colesterol/metabolismo , Eritritol/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácido Mevalônico/química , Dados de Sequência Molecular , Filogenia , Fitosteróis/química , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Sitosteroides/química , Sitosteroides/metabolismo , Esteróis/química , Esteróis/metabolismo , Estigmasterol/química , Estigmasterol/metabolismo , Nicotiana/genética , Triterpenos/química , Triterpenos/metabolismo , Withania/química , Withania/genética , Vitanolídeos/química
17.
J Biol Chem ; 289(24): 17249-67, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24770414

RESUMO

Oxidosqualene cyclases (OSCs) positioned at a key metabolic subdividing junction execute indispensable enzymatic cyclization of 2,3-oxidosqualene for varied triterpenoid biosynthesis. Such branch points present favorable gene targets for redirecting metabolic flux toward specific secondary metabolites. However, detailed information regarding the candidate OSCs covering different branches and their regulation is necessary for the desired genetic manipulation. The aim of the present study, therefore, was to characterize members of OSC superfamily from Withania somnifera (Ws), a medicinal plant of immense repute known to synthesize a large array of biologically active steroidal lactone triterpenoids called withanolides. Three full-length OSC cDNAs, ß-amyrin synthase (WsOSC/BS), lupeol synthase (WsOSC/LS), and cycloartenol synthase (WsOSC/CS), having open reading frames of 2289, 2268, and 2277 bp, were isolated. Heterologous expression in Schizosaccharomyces pombe, LC-MS analyses, and kinetic studies confirmed their monofunctionality. The three WsOSCs were found to be spatially regulated at transcriptional level with WsOSC/CS being maximally expressed in leaf tissue. Promoter analysis of three WsOSCs genes resulted in identification of distinct cis-regulatory elements. Further, transcript profiling under methyl jasmonate, gibberellic acid, and yeast extract elicitations displayed differential transcriptional regulation of each of the OSCs. Changes were also observed in mRNA levels under elicitations and further substantiated with protein expression levels by Western blotting. Negative regulation by yeast extract resulted in significant increase in withanolide content. Empirical evidence suggests that repression of competitive branch OSCs like WsOSC/BS and WsOSC/LS possibly leads to diversion of substrate pool toward WsOSC/CS for increased withanolide production.


Assuntos
Transferases Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Withania/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/química , Transferases Intramoleculares/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Transcrição Gênica , Withania/genética , Withania/metabolismo , Vitanolídeos/metabolismo
18.
Protoplasma ; 251(5): 1031-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24510215

RESUMO

Withania somnifera is one of the most important medicinal plant and is credited with various pharmacological activities. In this study, in vitro multiple shoot cultures were exposed to different concentrations (5-300 µM) of cadmium (Cd) as cadmium sulphate to explore its ability to accumulate the heavy metal ion and its impact on the metabolic status and adaptive responses. The results showed that supplemental exposure to Cd interfered with N, P, and K uptake creating N, P, and K deficiency at higher doses of Cd that also caused stunting of growth, chlorosis, and necrosis. The study showed that in vitro shoots could markedly accumulate Cd in a concentration-dependent manner. Enzymatic activities and isozymic pattern of catalase, ascorbate peroxidase, guaiacol peroxidase, peroxidase, glutathione-S-transferase, glutathione peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase were altered substantially under Cd exposure. Sugar metabolism was also markedly modulated under Cd stress. Various other parameters including contents of photosynthetic pigments, phenolics, tocopherol, flavonoids, reduced glutathione, nonprotein thiol, ascorbate, and proline displayed major inductive responses reflecting their protective role. The results showed that interplay of enzymatic as well as nonenzymatic responses constituted a system endeavor of tolerance of Cd accumulation and an efficient scavenging strategy of its stress implications.


Assuntos
Compostos de Cádmio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/metabolismo , Sulfatos/farmacologia , Withania/enzimologia , Antioxidantes/metabolismo , Transporte Biológico/efeitos dos fármacos , Metabolismo dos Carboidratos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Necrose/induzido quimicamente , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Espécies Reativas de Oxigênio , Withania/metabolismo
19.
PLoS One ; 8(9): e74777, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086372

RESUMO

Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ~60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[(14)C]-sucrose to orphan shoot (twigs) and [(14)C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression profiles are discussed with respect to their physiological overtones.


Assuntos
Oxirredutases do Álcool/genética , Regulação Enzimológica da Expressão Gênica , Especificidade de Órgãos/genética , Proteínas Recombinantes/metabolismo , Tropanos/metabolismo , Withania/enzimologia , Withania/genética , Oxirredutases do Álcool/química , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Biocatálise , Vias Biossintéticas/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Cromatografia Gasosa-Espectrometria de Massas , Genes de Plantas , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Extratos Vegetais , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato
20.
Appl Biochem Biotechnol ; 170(3): 729-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23609908

RESUMO

Glycosylation of flavonoids is mediated by family 1 uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs). Until date, there are few reports on functionally characterized flavonoid glycosyltransferases from Withania somnifera. In this study, we cloned the glycosyltransferase gene from W. somnifera (UGT73A16) showing 85-92 % homology with UGTs from other plants. UGT73A16 was expressed as a His(6)-tagged fusion protein in Escherichia coli. Several compounds, including flavonoids, were screened as potential substrates for UGT73A16. HPLC analysis and hypsochromic shift indicated that UGT73A16 transfers a glucose molecule to several different flavonoids. Based on kinetic parameters, UGT73A16 shows more catalytic efficiency towards naringenin. Here, we explored UGT73A16 of W. somnifera as whole cell catalyst in E. coli. We used flavonoids (genistein, apigenin, kaempferol, naringenin, biochanin A, and daidzein) as substrates for this study. More than 95 % of the glucoside products were released into the medium, facilitating their isolation. Glycosylation of substrates occurred on the 7- and 3-hydroxyl group of the aglycone. UGT73A16 also displayed regiospecific glucosyl transfer activity towards 3-hydroxy flavone compound, which is the backbone of all flavonols and also for a chemically synthesized compound, not found naturally. The present study generates essential knowledge and molecular as well as biochemical tools that allow the verification of UGT73A16 in glycosylation.


Assuntos
Flavonoides/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Withania/enzimologia , Clonagem Molecular , Escherichia coli/genética , Glucosiltransferases/isolamento & purificação , Filogenia , Especificidade por Substrato , Withania/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA