Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.836
Filtrar
1.
ACS Appl Mater Interfaces ; 16(19): 24221-24234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709623

RESUMO

Clinical studies have continually referred to the involvement of drug carrier having dramatic negative influences on the biocompatibility, biodegradability, and loading efficacy of hydrogel. To overcome this deficiency, researchers have proposed to directly self-assemble natural herbal small molecules into a hydrogel without any structural modification. However, it is still a formidable challenge due to the high requirements on the structure of natural molecules, leading to a rarity of this type of hydrogel. Mangiferin (MF) is a natural polyphenol of C-glucoside xanthone with various positive health benefits, including the treatment of diabetic wounds, but its poor hydrosolubility and low bioavailability significantly restrict the clinical application. Inspired by these, with heating/cooling treatment, a carrier-free hydrogel (MF-gel) is developed by assembling the natural herbal molecule mangiferin, which is mainly governed through hydrogen bonds and intermolecular π-π stacking interactions. The as-prepared hydrogel has injectable and self-healing properties and shows excellent biocompatibility, continuous release ability, and reversible stimuli-responsive performances. All of the superiorities enable the MF-based hydrogel to serve as a potential wound dressing for treating diabetic wounds, which was further confirmed by both the vitro and vivo studies. In vitro, the MF-gel could promote the migration of healing-related cells from peripheral as well as the angiogenesis and displays the capacity of mediating inflammation response by scavenging the intracellular ROS. In vivo, the MF-gel accelerates wound contraction and healing via inflammatory adjustment, collagen deposition, and angiogenesis. This study provides a facile and effective method for diabetic wound management and emphasizes the direct self-assembly hydrogel from natural herbal small molecule.


Assuntos
Hidrogéis , Cicatrização , Xantonas , Xantonas/química , Xantonas/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Masculino
2.
Pak J Pharm Sci ; 37(2): 291-296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38767095

RESUMO

Mangiferin, a key bioactive constituent in Gentiana rhodantha, has a favorable impact on reducing blood sugar. A selective and sensitive UPLC MS/MS approach was developed for determining mangiferin in diabetic rats. Employing acetonitrile protein precipitation, chromatographic separation utilized a 2.1×50 mm, 3.5µm C18 column with a mobile phase of 0.1% formic acid aqueous and 5mM ammonium acetate (A, 45%) and acetonitrile (B, 55%) at a 0.5mL min-1 flow rate. Quantification, employing the multiple reaction monitoring (MRM) mode, focused on precursor-to-product ion transitions at m/z 447.1→271.1 for baicalin m/z and 421.0→301.0 for mangiferin. Calibration curves demonstrated linearity in the 1.00~100ng/mL range, with a lower quantification limit for rat plasma set at 1.00ng/mL. Inter- and intra-day accuracies spanned -9.1% to 8.5% and mangiferin mean recovery varied from 82.3% to 86.7%. The adeptly utilized UPLC-MS/MS approach facilitated the exploration of mangiferin pharmacokinetics in diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Gentiana , Extratos Vegetais , Espectrometria de Massas em Tandem , Xantonas , Animais , Xantonas/farmacocinética , Xantonas/sangue , Xantonas/administração & dosagem , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/farmacocinética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Administração Oral , Ratos , Gentiana/química , Ratos Sprague-Dawley , Estreptozocina , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia Líquida
3.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698399

RESUMO

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Assuntos
Hidrogéis , Lipossomos , Polietilenoglicóis , Tripsina , Xantonas , Lipossomos/química , Animais , Polietilenoglicóis/química , Hidrogéis/química , Humanos , Tripsina/metabolismo , Tripsina/química , Feminino , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias da Mama/tratamento farmacológico , Proteólise
4.
J Mol Model ; 30(5): 136, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634946

RESUMO

CONTEXT: Further understanding of the molecular mechanisms is necessary since it is important for designing new drugs. This study aimed to understand the molecular mechanisms involved in the design of drugs that are inhibitors of the α-glucosidase enzyme. This research aims to gain further understanding of the molecular mechanisms underlying antidiabetic drug design. The molecular docking process yielded 4 compounds with the best affinity energy, including γ-Mangostin, 1,6-dimethyl-ester-3-isomangostin, 1,3,6-trimethyl-ester-α-mangostin, and 3,6,7-trimethyl-ester-γ-mangostin. Free energy calculation with molecular mechanics with generalized born and surface area solvation indicated that the 3,6,7-trimethyl-γ-mangostin had a better free energy value compared to acarbose and simulated maltose together with 3,6,7-trimethyl-γ-mangostin compound. Based on the analysis of electrostatic, van der Waals, and intermolecular hydrogen interactions, 3,6,7-trimethyl-γ-mangostin adopts a noncompetitive inhibition mechanism, whereas acarbose adopts a competitive inhibition mechanism. Consequently, 3,6,7-trimethyl-ester-γ-mangostin, which is a derivative of γ-mangostin, can provide better activity in silico with molecular docking approaches and molecular dynamics simulations. METHOD: This research commenced with retrieving protein structures from the RCSB database, generating the formation of ligands using the ChemDraw Professional software, conducting molecular docking with the Autodock Vina software, and performing molecular dynamics simulations using the Amber software, along with the evaluation of RMSD values and intermolecular hydrogen bonds. Free energy, electrostatic interactions, and Van der Waals interaction were calculated using MM/GBSA. Acarbose, used as a positive control, and maltose are simulated together with test compound that has the best free energy. The forcefields used for molecular dynamics simulations are ff19SB, gaff2, and tip3p.


Assuntos
Hipoglicemiantes , Xantonas , alfa-Glucosidases , Acarbose , Maltose , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ésteres
5.
Int Immunopharmacol ; 133: 112038, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621336

RESUMO

Available online Atopic dermatitis (AD) is a chronic, persistent inflammatory skin disease characterized by eczema-like lesions and itching. Although topical steroids have been reported for treating AD, they are associated with adverse effects. Thus, safer medications are needed for those who cannot tolerate these agents for long periods. Mangiferin (MAN) is a flavonoid widely found in many herbs, with significant anti-inflammatory and immunomodulatory activities. However, the potential modulatory effects and mechanisms of MAN in treating Th2 inflammation in AD are unknown. In the present study, we reported that MAN could reduce inflammatory cell infiltration and scratching at the lesion site by decreasing MC903-induced levels of Th2-type cytokines, Histamine, thymic stromal lymphopoietin, Leukotriene B4, and immunoglobulin E. The mechanism may be related to reductions in MAPK and NF-κB-associated protein phosphorylation by macrophages. The results suggested that MAN may be a promising therapeutic agent for AD.


Assuntos
Citocinas , Dermatite Atópica , Macrófagos , NF-kappa B , Células Th2 , Xantonas , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Xantonas/farmacologia , Xantonas/uso terapêutico , Animais , NF-kappa B/metabolismo , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino , Linfopoietina do Estroma do Timo , Imunoglobulina E/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Pele/imunologia , Pele/metabolismo
6.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660022

RESUMO

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Assuntos
Disponibilidade Biológica , Carbono , Paeonia , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Xantonas , Xantonas/farmacocinética , Xantonas/química , Xantonas/administração & dosagem , Animais , Carbono/química , Carbono/farmacocinética , Masculino , Ratos , Paeonia/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos
7.
Zhongguo Zhong Yao Za Zhi ; 49(4): 951-960, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621902

RESUMO

The chemical constituents of ethyl acetate from Hypericum himalaicum were isolated by silica gel column chromatography, gel column chromatography, and high-performance liquid chromatography. The structure of the isolated compounds was identified by modern spectral techniques(NMR, MS, IR, and UV), and the potential anti-inflammatory targets and action pathways were analyzed and predicted by network pharmacology and molecular docking methods.Ten compounds were isolated from H. himalaicum and identified as 5,9,11-trihydroxy-3,3-dimethyl-3H,8H-benzo[6,7][1,4]dioxepino[2,3-f]chromen-8-one(1), betulinic acid(2), demethyltorosaflavone C(3), kaempferol(4), quercetin(5), hyperwightin B(6), toxyloxanthone B(7), 1,7-dihydroxy-xanthone(8), emodin(9), and 1,7-dihydroxy-4-methoxy-xanthone(10). Among them, compound 1 was a new compound, and compounds 2-10 were isolated from H. himalaicum for the first time. Network pharmacology screened 60 key anti-inflammatory targets. By acting on TNF, AKT1, CASP3, and other key targets, involving PI3K-AKT signaling pathway, IL-17 signaling pathway, VEGF signaling pathway, MAPK signaling pathway, and other signaling pathways, and phosphorylation, cell migration and movement, protein tyrosine kinase, and other biological processes were regulated to achieve anti-inflammatory effects. The results of molecular docking show that the above components have good binding properties with the core targets.


Assuntos
Medicamentos de Ervas Chinesas , Hypericum , Xantonas , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Anti-Inflamatórios/farmacologia , Proteínas Proto-Oncogênicas c-akt
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124250, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603958

RESUMO

Hydrogen sulfide (H2S), as a biomarker signaling gas, is not only susceptible to food spoilage, but also plays a key function in many biological processes. In this work, an activated near infrared (NIR) H2S fluorescent probe was designed and synthesized with quinoline-conjugated Rhodols dye as fluorophore skeleton and a dinitrophenyl group as the responsive moiety. Due to the quenching effect of dinitrophenyl group and the closed-loop structure of Rhodols fluorophore, probe itself has a very weak absorption and fluorescence background signal. After the H2S-induced thiolysis reaction, the probe exhibits a remarkable colormetric change and NIR fluorescent enhancement response at 716 nm with large Stokes shift (116 nm), and possesses high sensing selectivity and sensitivity with a low detection limits of 330 nM. The response mechanism is systematically characterized by 1H NMR, MS and DFT calculations. The colorimetric change allows the probe to be used as a test strips to detect H2S in food spoilage, while NIR fluorescent response helps the probe monitor intracellular H2S.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Espectrometria de Fluorescência , Sulfeto de Hidrogênio/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Espectrometria de Fluorescência/métodos , Xantonas/química , Limite de Detecção
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 40-47, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650157

RESUMO

The penicillin binding protein 2a (PBP2a) is a key enzyme associated with bacterial cell wall synthesis and bacterial infection. Therefore, targeting PBPa2 offers a promising approach for the therapeutics of bacterial resistance and infection. This study presents a comprehensive analysis of alpha-mangostin as a potential inhibitor of PBPa2. Molecular docking simulations revealed a strong binding affinity between alpha-mangostin and PBP2a, with an affinity score of -6.01 kcal/mol. Notably, alpha-mangostin formed a preferential hydrogen bond with THR216 of PBP2a, alongside several other polar and hydrophobic interactions. ADME and Toxicity predictions indicated that alpha-mangostin possesses favourable pharmacokinetic properties, suggesting its potential as a therapeutic agent. PASS analysis further highlighted its broad range of favourable biological properties. SwissTargetPrediction analysis reinforced these findings, indicating alpha-mangostin's association with various biological processes. Cell toxicity assays demonstrated that alpha-mangostin had no significant impact on the viability of HEK-293 cells, suggesting its potential safety for further development. The IC50 value for alpha-mangostin was found to be 33.43µM. Fluorescence-based binding assays showed that alpha-mangostin effectively inhibited PBP2a activity in a concentration-dependent manner, supporting its role as an inhibitor. In conclusion, the results suggest alpha-mangostin as a promising candidate for inhibiting PBP2a. Further,  extensive studies are warranted to explore its clinical applications.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas , Xantonas , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Humanos , Xantonas/química , Xantonas/farmacologia , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Ligação Proteica
10.
Reprod Domest Anim ; 59(4): e14565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646981

RESUMO

Mangiferin (MGN) is primarily found in the fruits, leaves, and bark of plants of the Anacardiaceae family, including mangoes. MGN exhibits various pharmacological effects, such as protection of the liver and gallbladder, anti-lipid peroxidation, and cancer prevention. This study aimed to investigate the effects of MGN supplementation during in vitro culture (IVC) on the antioxidant capacity of early porcine embryos and the underlying mechanisms involved. Porcine parthenotes in the IVC medium were exposed to different concentrations of MGN (0, 0.01, 0.1, and 1 µM). The addition of 0.1 µM MGN significantly increased the blastocyst formation rate of porcine embryos while reducing the apoptotic index and autophagy. Furthermore, the expression of antioxidation-related (SOD2, GPX1, NRF2, UCHL1), cell pluripotency (SOX2, NANOG), and mitochondria-related (TFAM, PGC1α) genes was upregulated. In contrast, the expression of apoptosis-related (CAS3, BAX) and autophagy-related (LC3B, ATG5) genes decreased after MGN supplementation. These findings suggest that MGN improves early porcine embryonic development by reducing oxidative stress-related genes.


Assuntos
Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Estresse Oxidativo , Xantonas , Animais , Estresse Oxidativo/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Xantonas/farmacologia , Técnicas de Cultura Embrionária/veterinária , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Suínos , Blastocisto/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Partenogênese
11.
Pak J Biol Sci ; 27(3): 132-141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686735

RESUMO

<b>Background and Objective:</b> The SU84 was isolated from the rhizosphere of <i>Curcuma longa</i> and identified to be <i>Streptomyces</i> sp. via analysis of its 16S rDNA sequence, chemotaxonomy and morphology. This study aimed to isolate major compounds from the extract culture of strain SU84 and evaluate their antibacterial activity. <b>Materials and Methods:</b> The TLC and silica gel column chromatography were used to purify major compounds, elucidate 1,3-dihydroxy-,2',2'-dimethylpyrano-(5,6)-xanthone (compound <b>1</b>) and lupeol (compound <b>2</b>) using mass spectrometry and nuclear magnetic resonance. One new chemical, compound <b>1</b>, was first isolated from microbial sources. Antibacterial, antioxidant and cytotoxic properties of these compounds were carried out. <b>Results:</b> Various bioassays showed that compound <b>1</b> displayed antibacterial property against Gram-positive bacteria, with a minimum inhibitory concentration of 8-32 µg/mL and minimum bactericidal concentration of 32-128 µg/mL. In addition, the purified compounds were tested against normal cell lines using tetrazolium assay. The results did not show cytotoxic property against L929 and Vero cells, with IC<sub>50</sub> values of >512.00 µg/mL. Compounds <b>1</b> and <b>2</b> have also antioxidant properties, with IC<sub>50</sub> values of 16.67±7.48 and 38.86±8.45 µg/mL, respectively. <b>Conclusion:</b> The findings suggested that compounds of <i>Streptomyces</i> sp. SU84 displayed antibacterial and antioxidant properties without cytotoxic activity. Extensive studies of compound <b>1</b> may be useful for the advancement of improved methods for avoidance, control and management of bacterial infections and metabolic-related free radical contribution.


Assuntos
Antibacterianos , Antioxidantes , Testes de Sensibilidade Microbiana , Streptomyces , Xantonas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Xantonas/farmacologia , Xantonas/isolamento & purificação , Streptomyces/metabolismo , Animais , Células Vero
12.
Free Radic Biol Med ; 218: 26-40, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570172

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in ferroptosis by regulating the cellular antioxidant response and maintaining redox balance. However, compounds that induce ferroptosis through dual antioxidant pathways based on Nrf2 have not been fully explored. In our study, we investigated the impact of Gambogic acid (GA) on MCF-7 cells and HepG2 cells in vitro. The cytotoxicity, colony formation assay and cell cycle assay demonstrated potent tumor-killing ability of GA, while its effect was rescued by ferroptosis inhibitors. Furthermore, RNA sequencing revealed the enrichment of ferroptosis pathway mediated by GA. In terms of ferroptosis indicators detection, evidences for GA were provided including reactive oxygen species (ROS) accumulation, alteration in mitochondrial membrane potential (MMP), disappearance of mitochondrial cristae, lipid peroxidation induction, malondialdehyde (MDA) accumulation promotion, iron ion accumulation as well as glutathione (GSH)/thioredoxin (Trx) depletion. Notably, Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) successfully rescued GA-induced MDA accumulation. In terms of mechanism, Nrf2 was found to play a pivotal role in GA-induced ferroptosis by inducing protein alterations through the iron metabolism pathway and GSH/Trx dual antioxidant pathway. Furthermore, GA exerted good antitumor activity in vivo through GSH/Trx dual antioxidant pathway, and Fer-1 significantly attenuated its efficacy. In conclusion, our findings first provided new evidence for GA as an inducer of ferroptosis, and Nrf2-mediated GSH/Trx dual antioxidant system played an important role in GA-induced ferroptosis.


Assuntos
Antioxidantes , Ferroptose , Glutationa , Fator 2 Relacionado a NF-E2 , Quinoxalinas , Espécies Reativas de Oxigênio , Compostos de Espiro , Xantonas , Ferroptose/efeitos dos fármacos , Xantonas/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Glutationa/metabolismo , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Células MCF-7 , Células Hep G2 , Ensaios Antitumorais Modelo de Xenoenxerto , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antineoplásicos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Cicloexilaminas/farmacologia , Fenilenodiaminas/farmacologia , Proliferação de Células/efeitos dos fármacos
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565383

RESUMO

The vascular disrupting agent (VDA) 5,6-dimethylxanthenone-4-acetic acid (DMXAA) induces apoptosis in vascular endothelial cells and leads to tumor hemorrhagic necrosis. While DMXAA has been proven to be a potent agonist of murine stimulator of interferon genes (mSTING), it has little effect on human-STING (hSTING). This species selectivity of DMXAA may explain its effectiveness against solid tumors in mice and its failure in clinical trials. However, DMXAA did reduce tumor volume in some patients during clinical trials. These paradoxical results have prompted us to investigate the anti-tumor mechanism of DMXAA beyond STING in the destruction of tumor vasculature in humans. In this study, we demonstrated that DMXAA binds to both human and mouse macrophage capping protein (CapG), with a KD of 5.839 µM for hCapG and a KD of 2.867 µM for mCapG, as determined by surface plasmon resonance (SPR) analysis. Homology modeling and molecular docking analysis of hCapG indicated that the critical residues involved in the hydrogen bond interaction of DMXAA with hCapG were Arg153, Thr151, and GLN141, Asn234. In addition, electrostatic pi-cation interaction occurred between DMXAA and hCapG. Further functional studies revealed that CapG protein plays a crucial role in the effects of DMXAA on human umbilical endothelial vein cell (HUEVC) angiogenesis and migration, as well as the expression of cytoskeletal proteins actin and tubulin, and the invasion of A549 lung adenocarcinoma cells. Our study has originally uncovered a novel cross-species pathway underlying the antitumor vascular disruption of DMXAA extends beyond STING activation. This finding deepens our understanding of the multifaceted actions of flavonoid VDAs in animal models and in clinical settings, and may provide insights for the precise therapy of DMXAA based on the biomarker CapG protein.


Assuntos
Proteínas de Membrana , Simulação de Acoplamento Molecular , Xantonas , Humanos , Animais , Xantonas/farmacologia , Xantonas/química , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química
14.
Bioorg Med Chem ; 103: 117655, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493728

RESUMO

Caged xanthones represent a class of natural secondary metabolites exhibiting significant potential as antitumor agents. These compounds are characterized by their distinct cage-like structures, which offer novel and compelling frameworks for drug design. Nonetheless, there exists a dearth of research focused on the structural modification of these compounds, particularly in relation to their cage-like architectures. This study aims to address this gap by introducing an innovative synthetic method for constructing a novel caged structure that incorporates a widely employed maleimide group. Drawing upon the well-established synthetic approach for dihydroxanthones previously developed within our research group, we successfully synthesized 13 new caged xanthones using the Diels-Alder reaction. Subsequently, we evaluated their anti-proliferative activity against HepG2, A549, and MDA-MB-231 cell lines. The results revealed that compound 10i exhibited IC50 values of 15.86 µM ± 1.29, 19.27 µM ± 1.58, and 12.96 µM ± 0.09 against these cell lines, respectively. Further investigations into the mechanism of action of 10i demonstrated its ability to induce G2/M cell cycle arrest and initiate mitochondria-mediated apoptosis in breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Xantonas , Humanos , Feminino , Xantonas/farmacologia , Xantonas/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
15.
Am J Chin Med ; 52(2): 355-386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533569

RESUMO

Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.


Assuntos
Síndrome Metabólica , Xantonas , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Chem Biol Interact ; 394: 110978, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552766

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-ß (Aß) protein aggregates, leading to synaptic dysfunction and neuronal cell death. In this study, we used a comprehensive approach encompassing in vitro assays, computational analyses, and an in vivo Caenorhabditis elegans model to evaluate the inhibitory effects of various xanthones, focusing on Garcinone D (GD), on Aß42 oligomer formation. Dot blot analysis revealed concentration-dependent responses among xanthones, with GD consistently inhibiting Aß42 oligomer formation at low concentrations (0.1 and 0.5 µM, inhibitions of 84.66 ± 2.25% and 85.06 ± 6.57%, respectively). Molecular docking and dynamics simulations provided insights into the molecular interactions between xanthones and Aß42, highlighting the disruption of key residues involved in Aß42 aggregation. The neuroprotective potential of GD was established using transgenic C. elegans GMC101, with substantial delays in paralysis reported at higher concentrations. Our findings show that GD is a potent suppressor of Aß42 oligomer formation, suggesting its potential as a therapeutic candidate for AD. The concentration-dependent effects observed in both in vitro and in vivo models underscore the need for nuanced dose-response assessments. These findings contribute novel insights into the therapeutic landscape of xanthones against AD, emphasizing the multifaceted potential of GD for further translational endeavors in neurodegenerative disorder research.


Assuntos
Peptídeos beta-Amiloides , Animais Geneticamente Modificados , Caenorhabditis elegans , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos , Xantonas , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Xantonas/farmacologia , Xantonas/química , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Simulação de Dinâmica Molecular , Modelos Animais de Doenças , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536750

RESUMO

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Assuntos
Autofagia , Melanossomas , Melanossomas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xantonas , Melanoma Experimental , Animais , Camundongos
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428686

RESUMO

The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Xantonas , Humanos , Hiperplasia/tratamento farmacológico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apelina , Movimento Celular , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Inflamação
19.
Phytomedicine ; 128: 155400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518641

RESUMO

BACKGROUND: The emergence and spread of vancomycin-resistant enterococci (VRE) have posed a significant challenge to clinical treatment, underscoring the need to develop novel strategies. As therapeutic options for VRE are limited, discovering vancomycin enhancer is a feasible way of combating VRE. Gambogic acid (GA) is a natural product derived from the resin of Garcinia hanburyi Hook.f. (Clusiaceae), which possesses antibacterial activity. PURPOSE: This study aimed to investigate the potential of GA as an adjuvant to restore the susceptibility of VRE to vancomycin. METHODS: In vitro antibacterial and synergistic activities were evaluated against vancomycin-susceptible and resistant strains by the broth microdilution method for the Minimal Inhibitory Concentrations (MICs) determination, and checkerboard assay and time-kill curve analysis for synergy evaluation. In vivo study was conducted on a mouse multi-organ infection model. The underlying antibacterial mechanism of GA was also explored. RESULTS: GA showed a potent in vitro activity against all tested strains, with MICs ranging from 2 to 4 µg/ml. The combination of GA and vancomycin exhibited a synergistic effect against 18 out of 23 tested VRE strains, with a median fractional inhibitory concentration index (FICI) of 0.254, and demonstrated a synergistic effect in the time-kill assay. The combination therapy exhibited a significant reduction in tissue bacterial load compared with either compound used alone. GA strongly binds to the ParE subunit of topoisomerase IV, a bacterial type II DNA topoisomerase, and suppresses its activity. CONCLUSIONS: The study suggests that GA has a significant antibacterial activity against enterococci, and sub-MIC concentrations of GA can restore the activity of vancomycin against VRE in vitro and in vivo. These findings indicate that GA has the potential to be a new antibacterial adjuvant to vancomycin in the treatment of infections caused by VRE.


Assuntos
Antibacterianos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Enterococos Resistentes à Vancomicina , Vancomicina , Xantonas , Xantonas/farmacologia , Animais , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/farmacologia , Vancomicina/farmacologia , Camundongos , Garcinia/química , Feminino , Infecções por Bactérias Gram-Positivas/tratamento farmacológico
20.
Z Naturforsch C J Biosci ; 79(3-4): 47-60, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549398

RESUMO

Garcinia mangostana fruits are used traditionally for inflammatory skin conditions, including acne. In this study, an in silico approach was employed to predict the interactions of G. mangostana xanthones and benzophenones with three proteins involved in the pathogenicity of acne, namely the human JNK1, Cutibacterium acnes KAS III and exo-ß-1,4-mannosidase. Molecular docking analysis was performed using Autodock Vina. The highest docking scores and size-independent ligand efficiency values towards JNK1, C. acnes KAS III and exo-ß-1,4-mannosidase were obtained for garcinoxanthone T, gentisein/2,4,6,3',5'-pentahydroxybenzophenone and mangostanaxanthone VI, respectively. To the best of our knowledge, this is the first report of the potential of xanthones and benzophenones to interact with C. acnes KAS III. Molecular dynamics simulations using GROMACS indicated that the JNK1-garcinoxanthone T complex had the highest stability of all ligand-protein complexes, with a high number of hydrogen bonds predicted to form between this ligand and its target. Petra/Osiris/Molinspiration (POM) analysis was also conducted to determine pharmacophore sites and predict the molecular properties of ligands influencing ADMET. All ligands, except for mangostanaxanthone VI, showed good membrane permeability. Garcinoxanthone T, gentisein and 2,4,6,3',5'-pentahydroxybenzophenone were identified as the most promising compounds to explore further, including in experimental studies, for their anti-acne potential.


Assuntos
Acne Vulgar , Benzofenonas , Garcinia mangostana , Simulação de Acoplamento Molecular , Xantonas , Xantonas/química , Xantonas/farmacologia , Benzofenonas/química , Benzofenonas/farmacologia , Garcinia mangostana/química , Humanos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Simulação de Dinâmica Molecular , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/química , Simulação por Computador , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA