Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Microb Cell Fact ; 23(1): 98, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561780

RESUMO

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.


Assuntos
Produtos Biológicos , Photorhabdus , Xenorhabdus , Xenorhabdus/genética , Xenorhabdus/metabolismo , Photorhabdus/genética , Edição de Genes , Produtos Biológicos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
ACS Chem Biol ; 19(4): 855-860, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452396

RESUMO

Triceptides are cyclophane-containing ribosomally synthesized and post-translationally modified peptides. The characteristic cross-links are formed between an aromatic ring to Cß on three-residue Ω1X2X3 motifs (Ω1 = aromatic). Here, we explored the promiscuity of the XYE family triceptide maturase, XncB from Xenorhabdus nematophila DSM 3370. Single amino acid variants were coexpressed with XncB in vivo in Escherichia coli, and we show that a variety of amino acids can be incorporated into the Phe-Gly-Asn cyclophane. Aromatic amino acids at the X3 position were accepted by the enzyme but yielded hydroxylated, rather than the typical cyclophane, products. These studies show that oxygen can be inserted but diverges in the final product formed relative to daropeptide maturases. Finally, truncations of the leader peptide showed that it is necessary for complete modification by XncB.


Assuntos
Aminoácidos , Peptídeos , Xenorhabdus , Aminoácidos/metabolismo , Peptídeos/química , Sinais Direcionadores de Proteínas , Xenorhabdus/química , Xenorhabdus/enzimologia , Xenorhabdus/genética , Xenorhabdus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidade por Substrato
3.
Toxins (Basel) ; 16(2)2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38393187

RESUMO

Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.


Assuntos
Mariposas , Nematoides , Xenorhabdus , Animais , Xenorhabdus/genética , Filogenia , Argentina , Nematoides/genética , Mariposas/genética , Análise de Sequência , Simbiose
4.
Insect Biochem Mol Biol ; 164: 104045, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040266

RESUMO

Txp40 is a ubiquitous, conserved, and novel toxin from Xenorhabdus and Photorhabdus bacteria, toxic to a wide range of insect pests. However, the three-dimensional structure and toxicity mechanism for Txp40 or any of its sequence homologs are not yet known. Here, we are reporting the crystal structure of the insecticidal protein Txp40 from Xenorhabdus nematophila at 2.08 Å resolution. The Txp40 was structurally distinct from currently known insecticidal proteins. Txp40 consists of two structurally different domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), primarily joined by a 33-residue long linker peptide. Txp40 displayed proteolytic propensity. Txp40 gets proteolyzed, removing the linker peptide, which is essential for proper crystal packing. NTD adopts a novel fold composed of nine amphipathic helices and has no shared sequence or structural homology to any known proteins. CTD has structural homology with RNases of type II toxin-antitoxin (TA) complex belonging to the RelE/ParE toxin domain superfamily. NTD and CTD were individually toxic to Galleria mellonella larvae. However, maximal toxicity was observed when both domains were present. Our results suggested that the Txp40 acts as a two-domain binary toxin, which is unique and different from any known binary toxins and insecticidal proteins. Txp40 is also unique because it belongs to the prokaryotic RelE/ParE toxin family with a toxic effect on eukaryotic organisms, in contrast to other members of the same family. Broad insect specificity and unique binary toxin complex formation make Txp40 a viable candidate to overcome the development of resistance in insect pests.


Assuntos
Antitoxinas , Inseticidas , Xenorhabdus , Animais , Inseticidas/metabolismo , Xenorhabdus/genética , Proteínas de Bactérias/metabolismo , Insetos/metabolismo , Antitoxinas/metabolismo , Peptídeos/metabolismo
5.
Dev Comp Immunol ; 151: 105101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000489

RESUMO

Two bacterial genera, Xenorhabdus and Photorhabdus, are mutually symbiotic to the entomopathogenic nematodes, Steinernema and Heterorhabditis, respectively. The infective juveniles deliver the symbiotic bacteria to the hemocoel of target insects, in which the bacteria proliferate and help the development of the host nematode. The successful parasitism of the nematode-bacterial complex depends on host immunosuppression by the bacteria via their secondary metabolites. Leucine-responsive regulatory protein (Lrp) is a global bacterial transcriptional factor that plays a crucial role in parasitism. However, its regulatory targets to suppress insect immunity are not clearly understood. This study investigated the bacterial genes regulated by Lrp and the subsequent production of secondary metabolites in Xenorhabdus hominickii. Lrp expression occurred at the early infection stage of the bacteria in a target insect, Spodoptera exigua. A preliminary in silico screening indicated that 3.7% genes among 4075 predicted genes encoded in X. hominickii had the Lrp-response element on their promoters, including two non-ribosomal peptide synthetases (NRPSs). Eight NRPS (NRPS1-NRPS8) genes were predicted in the bacterial genome, in which six NRPS (NRPS3-NRPS8) expressions were positively correlated with Lrp expression in the infected larvae of S. exigua. Exchange of the Lrp promoter with an inducible promoter altered the production of the secondary metabolites and the NRPS expression levels. The immunosuppressive activities of X. hominickii were dependent on the Lrp expression level. The metabolites produced by Lrp expression included the eicosanoid-biosynthesis inhibitors and hemolytic factors. A cyclic dipeptide (=cPF) was produced by the bacteria at high Lrp expression and inhibited the phospholipase A2 activity of S. exigua in a competitive inhibitory manner. These results suggest that Lrp is a global transcriptional factor of X. hominickii and plays a crucial role in insect immunosuppression by modulating NRPS expression.


Assuntos
Nematoides , Xenorhabdus , Animais , Proteína Reguladora de Resposta a Leucina/metabolismo , Xenorhabdus/genética , Nematoides/metabolismo , Peptídeo Sintases/metabolismo , Fatores de Transcrição/genética , Spodoptera , Simbiose
6.
J Agric Food Chem ; 72(1): 274-283, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109418

RESUMO

Xenorhabdus can produce numerous natural products, but their development has been hampered by the lack of a seamless genetic manipulation method. In this study, we compared several lethal genes and determined the sacB gene as the most effective counter-selection marker and then established a dual selection/counter-selection system by integrating neo and sacB genes into one cassette. This provides an efficient and seamless genetic manipulation method for Xenorhabdus. Using this method, DNA fragments ranging from 205 to 47,788 bp in length were seamlessly knocked out or replaced with impressively high positive rates of 80 to 100% in Xenorhabdus budapestensis XBD8. In addition, the method was successfully applied with good efficiency (45-100%) in Xenorhabdus nematophila CB6. To further validate the method, different constitutive promoters were used to replace the native fclC promoter in a batch experiment. The positivity rate remained consistently high, at 46.3%. In comparison to WT XBD8, the recombinant strain MX14 demonstrated a significant increase in the production of fabclavine 7 and fabclavine 8 by 4.97-fold and 3.22-fold, respectively, while the overall production of fabclavines was enhanced by 3.52-fold.


Assuntos
Xenorhabdus , Xenorhabdus/genética , Regiões Promotoras Genéticas
7.
J Agric Food Chem ; 71(23): 8959-8968, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37278378

RESUMO

Xenocoumacin 1 (Xcn1) is an excellent antimicrobial natural product against Phytophthora capsici. However, the commercial development of Xcn1 is hindered by the low yield, which results in high application costs. In this study, multiple metabolic strategies, including blocking the degradation pathway, promoter engineering, and deletion of competing biosynthetic gene clusters, were employed to improve the production of Xcn1, which was increased from 0.07 to 0.91 g/L. The formation of Xcn1 reached 1.94 g/L in the TB medium with the final strain T3 in a shake flask and further reached 3.52 g/L in a 5 L bioreactor, which is the highest yield ever reported. The engineered strain provides a valuable platform for production of Xcn1, and the possible commercial development of the biofungicide. We anticipate that the metabolic engineering strategies utilized in this study and the constructed constitutive promoter library can be widely applied to other bacteria of the genera Xenorhabdus and Photorhabdus.


Assuntos
Anti-Infecciosos , Xenorhabdus , Xenorhabdus/genética , Anti-Infecciosos/metabolismo , Benzopiranos/metabolismo , Reatores Biológicos/microbiologia
8.
mBio ; 14(3): e0043423, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37154562

RESUMO

To what extent are generalist species cohesive evolutionary units rather than a compilation of recently diverged lineages? We examine this question in the context of host specificity and geographic structure in the insect pathogen and nematode mutualist Xenorhabdus bovienii. This bacterial species partners with multiple nematode species across two clades in the genus Steinernema. We sequenced the genomes of 42 X. bovienii strains isolated from four different nematode species and three field sites within a 240-km2 region and compared them to globally available reference genomes. We hypothesized that X. bovienii would comprise several host-specific lineages, such that bacterial and nematode phylogenies would be largely congruent. Alternatively, we hypothesized that spatial proximity might be a dominant signal, as increasing geographic distance might lower shared selective pressures and opportunities for gene flow. We found partial support for both hypotheses. Isolates clustered largely by nematode host species but did not strictly match the nematode phylogeny, indicating that shifts in symbiont associations across nematode species and clades have occurred. Furthermore, both genetic similarity and gene flow decreased with geographic distance across nematode species, suggesting differentiation and constraints on gene flow across both factors, although no absolute barriers to gene flow were observed across the regional isolates. Several genes associated with biotic interactions were found to be undergoing selective sweeps within this regional population. The interactions included several insect toxins and genes implicated in microbial competition. Thus, gene flow maintains cohesiveness across host associations in this symbiont and may facilitate adaptive responses to a multipartite selective environment. IMPORTANCE Microbial populations and species are notoriously hard to delineate. We used a population genomics approach to examine the population structure and the spatial scale of gene flow in Xenorhabdus bovienii, an intriguing species that is both a specialized mutualistic symbiont of nematodes and a broadly virulent insect pathogen. We found a strong signature of nematode host association, as well as evidence for gene flow connecting isolates associated with different nematode host species and collected from distinct study sites. Furthermore, we saw signatures of selective sweeps for genes involved with nematode host associations, insect pathogenicity, and microbial competition. Thus, X. bovienii exemplifies the growing consensus that recombination not only maintains cohesion but can also allow the spread of niche-beneficial alleles.


Assuntos
Rabditídios , Xenorhabdus , Animais , Evolução Biológica , Filogenia , Xenorhabdus/genética , Insetos , Simbiose/fisiologia , Rabditídios/genética , Rabditídios/microbiologia
9.
J Invertebr Pathol ; 196: 107870, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493843

RESUMO

Larvae of the invasive pest Drosophila suzukii are susceptible to the Steinernema carpocapsae - Xenorhabdus nematophila complex and an assessment of the immune-regulatory system activation in this insect was performed to understand the response to the nematode infection. The expressions of 14 immune-related genes of different pathways (Imd, Toll, Jak-STAT, ProPO, JNK, TGF-ß) were analyzed using qRT-PCR to determine variations after nematode penetration (90 min and 4 h) and after bacterial release (14 h). Before the bacteria were present, the nematodes were not recognized by the immune system of the larvae and practically none of the analyzed pathways presented variations when compared with the non-infected larvae. However, after the X. nematophila were released, PGRP-LC was activated leading to the gene upregulation of antimicrobial peptides of both the Toll and Imd pathways. Interestingly, the cellular response was inactive during the infection course as Jak/STAT and pro-phenoloxidase genes remained unresponsive to the presence of both pathogens. These results illustrate how D. suzukii immune pathways responded differently to the nematode and bacteria along the infection course.


Assuntos
Rabditídios , Xenorhabdus , Animais , Drosophila , Larva/microbiologia , Xenorhabdus/genética , Simbiose , Rabditídios/genética
10.
Appl Microbiol Biotechnol ; 106(23): 7857-7866, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36326838

RESUMO

Xenorhabdus can produce a large number of secondary metabolites with insecticidal, bacteriostatic, and antitumor activities. Efficient gene editing tools will undoubtedly facilitate the functional genomics research and bioprospecting in Xenorhabdus. In this study, BlastP analysis using the amino acid sequences of Redαß or RecET recombinases as queries resulted in the identification of an operon (XBJ1_operon 0213) containing RecET-like recombinases encoding genes from the genome of Xenorhabdus bovienii strain SS-2004. Three proteins encoded by this operon was indispensable for full activity of recombineering, namely XBJ1-1173 (RecE-like protein), XBJ1-1172 (RecT-like protein), and XBJ1-1171 (single-strand annealing protein). Using this newly developed recombineering system, a gene cluster responsible for biosynthesis of a novel secondary metabolite (Min16) was identified from X. stockiae HN_xs01 strain. Min16 which exhibited antibacterial and cytotoxic activities was determined to be a cyclopeptide composed of Acyl-Phe-Thr-Phe-Pro-Pro-Leu-Val by using high-resolution mass spectrometry and nuclear magnetic resonance analysis, and was designated as changshamycin. This host-specific recombineering system was proven to be effective for gene editing in Xenorhabdus, allowing for efficient discovery of novel natural products with attractive bioactivities. KEY POINTS: • Screening and identification of efficient gene editing tools from Xenorhabdus • Optimization of the Xenorhabdus electroporation parameters • Discovery of a novel cyclopeptide compound with multiple biological activities.


Assuntos
Produtos Biológicos , Xenorhabdus , Xenorhabdus/genética , Recombinases/genética , Recombinases/metabolismo , Produtos Biológicos/metabolismo , Óperon , Peptídeos Cíclicos/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233296

RESUMO

In bacteria, DNA-methyltransferase are responsible for DNA methylation of specific motifs in the genome. This methylation usually occurs at a very high rate. In the present study, we studied the MTases encoding genes found in the entomopathogenic bacteria Xenorhabdus. Only one persistent MTase was identified in the various species of this genus. This MTase, also broadly conserved in numerous Gram-negative bacteria, is called Dam: DNA-adenine MTase. Methylome analysis confirmed that the GATC motifs recognized by Dam were methylated at a rate of >99% in the studied strains. The observed enrichment of unmethylated motifs in putative promoter regions of the X. nematophila F1 strain suggests the possibility of epigenetic regulations. The overexpression of the Dam MTase responsible for additional motifs to be methylated was associated with impairment of two major phenotypes: motility, caused by a downregulation of flagellar genes, and hemolysis. However, our results suggest that dam overexpression did not modify the virulence properties of X. nematophila. This study increases the knowledge on the diverse roles played by MTases in bacteria.


Assuntos
DNA Metiltransferases Sítio Específica (Adenina-Específica) , Xenorhabdus , Adenina , DNA , Metilação de DNA , Metilases de Modificação do DNA/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Xenorhabdus/genética
12.
Toxins (Basel) ; 14(9)2022 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-36136584

RESUMO

Xenorhabdus nematophila HB310 secreted the insecticidal protein toxin complex (Tc). The chi60 and chi70 chitinase genes are located on the gene cluster encoding Tc toxins. To clarify the insecticidal activity of chitinases and their relationship with Tc toxins, the insecticidal activity of the chitinases was assessed on Helicoverpa armigera. Then, the chi60 and chi70 genes of X. nematophila HB310 were knocked out by the pJQ200SK suicide plasmid knockout system. The insecticidal activity of Tc toxin from the wild-type strain (WT) and mutant strains was carried out. The results demonstrate that Chi60 and Chi70 had an obvious growth inhibition effect against the second instar larvae of H. armigera with growth-inhibiting rates of 81.99% and 90.51%, respectively. Chi70 had a synergistic effect with the insecticidal toxicity of Tc toxins, but Chi60 had no synergistic effect with Tc toxins. After feeding Chi60 and Chi70, the peritrophic membrane of H. armigera became inelastic, was easily broken and leaked blue dextran. The Δchi60, Δchi70 and Δchi60-chi70 mutant strains were successfully screened. The toxicity of Tc toxins from the WT, Δchi60, Δchi70 and Δchi60-chi70 was 196.11 µg/mL, 757.25 µg/mL, 885.74 µg/mL and 20,049.83 µg/mL, respectively. The insecticidal activity of Tc toxins from Δchi60 and Δchi70 was 3.861 and 4.517 times lower than that of Tc toxins from the WT, respectively, while the insecticidal activity of Tc toxins from the Δchi60-chi70 mutant strain almost disappeared. These results indicate that the presence of chi60 and chi70 is indispensable for the toxicity of Tc toxins.


Assuntos
Quitinases , Inseticidas , Mariposas , Toxinas Biológicas , Xenorhabdus , Animais , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/toxicidade , Quitinases/genética , Quitinases/metabolismo , Humanos , Inseticidas/metabolismo , Inseticidas/farmacologia , Larva , Toxinas Biológicas/metabolismo , Xenorhabdus/genética
13.
PLoS One ; 17(9): e0274956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129957

RESUMO

Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Photorhabdus , Xenorhabdus , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Família Multigênica , Oxacilina/farmacologia , Photorhabdus/metabolismo , Extratos Vegetais/farmacologia , Policetídeo Sintases/genética , Sideróforos/metabolismo , Staphylococcus aureus/genética , Xenorhabdus/genética
14.
J Invertebr Pathol ; 194: 107829, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36167186

RESUMO

Photorhabdus insect related proteins A & B (PirA, PirB) from Photorhabdus and Xenorhabdus bacteria exhibit both oral and injectable toxicity against lepidopteran and dipteran insect pest. The pirA, pirAt (encoding 6 N-terminal truncated PirA), pirB genes, pirA-pirB (with ERIC sequences), pirA-pirB-mERIC (modified pirA-pirB with mutated ERIC sequences) and polycistronic-pirAB were cloned and expressed in Escherichia coli. However, PirA protein was expressed in insoluble form and therefore the pirA gene was modified to produce PirAt. Moreover, pirA-pirB-mERIC, polycistronic-pirAB and co-transformed pirA/pirB genes were not expressed in the studied prokaryotic expression systems. None of the single purified proteins or mixtures of the individually expressed and purified proteins were toxic to mosquito larvae of Aedes aegypti and Culex quinquefasciatus. However, PirA-PirB protein mixtures purified from pirA-pirB operon plasmid were toxic to A. aegypti and C. quinquefasciatus larvae with LC50 values of 991 and 614 ng/ml, respectively. The presence of ERIC sequences between the two orfs of the pirA-pirB operon could help to obtain the proteins in biologically active form. Further, results confirm that PirA-PirB proteins of P. akhurstii subsp. akhurstii K-1 are binary insecticidal toxins and ERIC sequences could play an important role in expression of Pir proteins. Reports of biophysical characterization of individually purified PirAt, PirB and expressed PirA-PirB toxin mixture could provide the structural insight into these proteins.


Assuntos
Toxinas Bacterianas , Photorhabdus , Xenorhabdus , Animais , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Escherichia coli , Proteínas de Insetos/metabolismo , Larva/metabolismo , Photorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/metabolismo
15.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012310

RESUMO

Fungal colonization can severely damage artifacts. Nematode endosymbiotic bacteria exhibit good prospects in protecting artifacts from fungal damage. We previously found that supernatant from the fermentation of nematode endosymbiotic bacterium, Xenorhabdus bovienii, is effective in inhibiting the growth of Fusarium solani NK-NH1, the major disease fungus in the Nanhai No.1 Shipwreck. Further experiments proved that X. bovienii produces volatile organic compounds (VOCs) that inhibit NK-NH1. Here, using metabolomic analysis, GC-MS, and transcriptomic analysis, we explored the antifungal substances and VOCs produced by X. bovienii and investigated the mechanism underlying its inhibitory effect against NK-NH1. We show that X. bovienii produces several metabolites, mainly lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. The VOCs produced by X. bovienii showed two specific absorption peaks, and based on the library ratio results, these were predicted to be of 2-pentanone, 3-(phenylmethylene) and 1-hexen-3-one, 5-methyl-1-phenyl. The inhibition of F. solani by VOCs resulted in upregulation of genes related to ribosome, ribosome biogenesis, and the oxidative phosphorylation and downregulation of many genes associated with cell cycle, meiosis, DNA replication, and autophagy. These results are significant for understanding the inhibitory mechanisms employed by nematode endosymbiotic bacteria and should serve as reference in the protection of artifacts.


Assuntos
Fusarium , Nematoides , Compostos Orgânicos Voláteis , Xenorhabdus , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bactérias/metabolismo , Nematoides/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Xenorhabdus/genética
16.
J Evol Biol ; 35(7): 962-972, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661463

RESUMO

Coevolution between mutualists can lead to reciprocal specialization, potentially causing barriers to host switching. Here, we conducted assays to identify pre- and post-association barriers to host switching by endosymbiotic bacteria, both within and between two sympatric nematode clades. In nature, Steinernema nematodes and Xenorhabdus bacteria form an obligate mutualism. Free-living juvenile nematodes carry Xenorhabdus in a specialized intestinal receptacle. When nematodes enter an insect, they release the bacteria into the insect hemocoel. The bacteria aid in killing the insect and facilitate nematode reproduction. Prior to dispersing from the insect, juvenile nematodes must form an association with their symbionts; the bacteria must adhere to the intestinal receptacle. We tested for pre-association barriers by comparing the effects of bacterial strains on native versus non-native nematodes via their virulence towards, nutritional support of, and ability to associate with different nematode species. We then assessed post-association barriers by measuring the relative fitness of nematodes carrying each strain of bacteria. We found evidence for both pre- and post-association barriers between nematode clades. Specifically, some bacteria were highly virulent to non-native hosts, and some nematode hosts carried fewer cells of non-native bacteria, creating pre-association barriers. In addition, reduced infection success and lower nematode reproduction were identified as post-association barriers. No barriers to symbiont switching were detected between nematode species within the same clade. Overall, our study suggests a framework that could be used to generate predictions for the evolution of barriers to host switching in this and other systems.


Assuntos
Rabditídios , Xenorhabdus , Animais , Bactérias , Insetos , Rabditídios/microbiologia , Simbiose , Simpatria , Xenorhabdus/genética
17.
mSystems ; 7(3): e0031222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35543104

RESUMO

Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.


Assuntos
Mariposas , Rabditídios , Xenorhabdus , Animais , Ecossistema , Triptofano , Insetos , Xenorhabdus/genética , Rabditídios/microbiologia
18.
mBio ; 13(3): e0070022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575547

RESUMO

With the overmining of actinomycetes for compounds acting against Gram-negative pathogens, recent efforts to discover novel antibiotics have been focused on other groups of bacteria. Teixobactin, the first antibiotic without detectable resistance that binds lipid II, comes from an uncultured Eleftheria terra, a betaproteobacterium; odilorhabdins, from Xenorhabdus, are broad-spectrum inhibitors of protein synthesis, and darobactins from Photorhabdus target BamA, the essential chaperone of the outer membrane of Gram-negative bacteria. Xenorhabdus and Photorhabdus are symbionts of the nematode gut microbiome and attractive producers of secondary metabolites. Only small portions of their biosynthetic gene clusters (BGC) are expressed in vitro. To access their silent operons, we first separated extracts from a small library of isolates into fractions, resulting in 200-fold concentrated material, and then screened them for antimicrobial activity. This resulted in a hit with selective activity against Escherichia coli, which we identified as a novel natural product antibiotic, 3'-amino 3'-deoxyguanosine (ADG). Mutants resistant to ADG mapped to gsk and gmk, kinases of guanosine. Biochemical analysis shows that ADG is a prodrug that is converted into an active ADG triphosphate (ADG-TP), a mimic of GTP. ADG incorporates into a growing RNA chain, interrupting transcription, and inhibits cell division, apparently by interfering with the GTPase activity of FtsZ. Gsk of the purine salvage pathway, which is the first kinase in the sequential phosphorylation of ADG, is restricted to E. coli and closely related species, explaining the selectivity of the compound. There are probably numerous targets of ADG-TP among GTP-dependent proteins. The discovery of ADG expands our knowledge of prodrugs, which are rare among natural compounds. IMPORTANCE Drug-resistant Gram-negative bacteria have become the major problem driving the antimicrobial resistance crisis. Searching outside the overmined actinomycetes, we focused on Photorhabdus, gut symbionts of enthomopathogenic nematodes that carry up to 40 biosynthetic gene clusters coding for secondary metabolites. Most of these are silent and do not express in vitro. To gain access to silent operons, we first fractionated supernatant from Photorhabdus and then tested 200-fold concentrated material for activity. This resulted in the isolation of a novel antimicrobial, 3'-amino 3'-deoxyguanosine (ADG), active against E. coli. ADG is an analog of guanosine and is converted into an active ADG-TP in the cell. ADG-TP inhibits transcription and probably numerous other GTP-dependent targets, such as FtsZ. Natural product prodrugs have been uncommon; discovery of ADG broadens our knowledge of this type of antibiotic.


Assuntos
Produtos Biológicos , Proteínas de Escherichia coli , Nematoides , Photorhabdus , Pró-Fármacos , Xenorhabdus , Animais , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Produtos Biológicos/metabolismo , Desoxiguanosina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , Nematoides/microbiologia , Óperon , Photorhabdus/genética , Photorhabdus/metabolismo , Pró-Fármacos/metabolismo , Xenorhabdus/genética
19.
Nat Chem ; 14(6): 701-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469007

RESUMO

Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria-nematode-insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship.


Assuntos
Produtos Biológicos , Nematoides , Photorhabdus , Xenorhabdus , Animais , Humanos , Insetos/genética , Insetos/microbiologia , Família Multigênica , Nematoides/genética , Nematoides/microbiologia , Photorhabdus/genética , Simbiose/genética , Xenorhabdus/genética
20.
J Vis Exp ; (181)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35435903

RESUMO

Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects that live in the soil. The main characteristic of their life cycle is the mutualistic association with the bacteria Photorhabdus and Xenorhabdus, respectively. The nematode parasites are able to locate and enter suitable insect hosts, subvert the insect immune response, and multiply efficiently to produce the next generation that will actively hunt new insect prey to infect. Due to the properties of their life cycle, entomopathogenic nematodes are popular biological control agents, which are used in combination with insecticides to control destructive agricultural insect pests. Simultaneously, these parasitic nematodes represent a research tool to analyze nematode pathogenicity and host anti-nematode responses. This research is aided by the recent development of genetic techniques and transcriptomic approaches for understanding the role of nematode secreted molecules during infection. Here, a detailed protocol on maintaining entomopathogenic nematodes and using a gene knockdown procedure is provided. These methodologies further promote the functional characterization of entomopathogenic nematode infection factors.


Assuntos
Nematoides , Photorhabdus , Xenorhabdus , Animais , Insetos/genética , Nematoides/genética , Nematoides/microbiologia , Photorhabdus/genética , Simbiose/genética , Xenorhabdus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA