Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Emerg Infect Dis ; 30(9): 1850-1864, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173663

RESUMO

Plague is a deadly zoonosis that still poses a threat in many regions of the world. We combined epidemiologic, host, and vector surveillance data collected during 1961-1980 from the Araripe Plateau focus in northeastern Brazil with ecologic, geoclimatic, and Yersinia pestis genomic information to elucidate how these factors interplay in plague activity. We identified well-delimited plague hotspots showing elevated plague risk in low-altitude areas near the foothills of the plateau's concave sectors. Those locations exhibited distinct precipitation and vegetation coverage patterns compared with the surrounding areas. We noted a seasonal effect on plague activity, and human cases linearly correlated with precipitation and rodent and flea Y. pestis positivity rates. Genomic characterization of Y. pestis strains revealed a foundational strain capable of evolving into distinct genetic variants, each linked to temporally and spatially constrained plague outbreaks. These data could identify risk areas and improve surveillance in other plague foci within the Caatinga biome.


Assuntos
Peste , Yersinia pestis , Peste/epidemiologia , Peste/microbiologia , Brasil/epidemiologia , Yersinia pestis/genética , Humanos , Animais , Epidemias , Sifonápteros/microbiologia , Genoma Bacteriano , Genômica/métodos , Estações do Ano
2.
Nat Commun ; 15(1): 7062, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152136

RESUMO

Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins is commonly associated with a variety of stress responses and cellular processes in eukaryotes, but its potential roles in bacteria are unclear. Here, we show that protein HmwC acts as an O-GlcNAc transferase (OGT) responsible for O-GlcNAcylation of multiple proteins in Yersinia pestis, a flea-borne pathogen responsible for plague. We identify 64 O-GlcNAcylated proteins (comprising 65 sites) with differential abundance under conditions mimicking the mammalian host (Mh) and flea vector (Fv) environments. Deletion of hmwC, encoding a putative OGT, structurally distinct from any existing member of the GT41 family, results in reduced O-GlcNAcylation, reduced growth, and alterations in virulence properties and survival under stress. Purified HmwC can modify target proteins in vitro using UDP-GlcNAc as sugar donor. One of the target proteins, OsdY, promotes Y. pestis survival under oxidative stress conditions. Thus, our results support that regulation of antioxidative responses through O-GlcNAcylation may be a conserved process shared by prokaryotes and eukaryotes.


Assuntos
Proteínas de Bactérias , N-Acetilglucosaminiltransferases , Yersinia pestis , Yersinia pestis/metabolismo , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Yersinia pestis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Animais , Virulência , Acetilglucosamina/metabolismo , Camundongos , Antioxidantes/metabolismo , Processamento de Proteína Pós-Traducional , Peste/microbiologia , Peste/metabolismo , Estresse Oxidativo , Glicosilação
3.
Commun Biol ; 7(1): 1013, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155318

RESUMO

Yersinia pestis has been infecting humans since the Late Neolithic (LN). Whether those early infections were isolated zoonoses or initiators of a pandemic remains unclear. We report Y. pestis infections in two individuals (of 133) from the LN necropolis at Warburg (Germany, 5300-4900 cal BP). Our analyses show that the two genomes belong to distinct strains and reflect independent infection events. All LN genomes known today (n = 4) are basal in the phylogeny and represent separate lineages that probably originated in different animal hosts. In the LN, an opening of the landscape resulted in the introduction of new rodent species, which may have acted as Y. pestis reservoirs. Coincidentally, the number of dogs increased, possibly leading to Y. pestis infections in canines. Indeed, we detect Y. pestis in an LN dog. Collectively, our data suggest that Y. pestis frequently entered human settlements at the time without causing significant outbreaks.


Assuntos
Doenças do Cão , Filogenia , Peste , Yersinia pestis , Animais , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação , Cães/microbiologia , Peste/microbiologia , Peste/epidemiologia , Peste/história , Peste/transmissão , Humanos , Doenças do Cão/microbiologia , Alemanha/epidemiologia , Genoma Bacteriano , História Antiga
4.
BMC Pulm Med ; 24(1): 378, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090583

RESUMO

BACKGROUND: Plague is an acute infectious disease caused by the Yersinia pestis. Historically, it has been a major pandemic with high mortality rates, known as the "Black Death" in the 14th century, which resulted in millions of deaths in Europe. With increasing economic prosperity, more and more people are traveling to Xizang. However, this trend also hides significant safety hazards. Currently, there are few recent reports on plague, especially those with imaging manifestations available. In this study, we report the detailed clinical and radiological data of the patient with pneumonic plague in Xizang, China, in 2023. CASE PRESENTATION: We report a case of pneumonic plague in Xizang, which occurred in a herdsman living in an area where dead marmots were found. The patient presented with symptoms such as fever, hemoptysis, dyspnea and coma. Chest computed tomography (CT) scans showed multiple nodules distributed in the central regions of lung lobes, consolidation distributed in secondary pulmonary lobules, and had a gravity-dependent distribution pattern. These imaging findings were consistent with pulmonary hemorrhage and diffuse alveolar damage. Despite emergency treatment, the patient died within 48 h of admission. Through retrospective medical history investigation, laboratory examination and autopsy, the final diagnosis was confirmed as pneumonic plague. CONCLUSION: Pneumonic plague is the most deadly infectious disease, and its pathological features mainly include damage to the alveoli, pulmonary hemorrhage, and pulmonary edema. Corresponding to CT, it manifests as acute and rapidly progressing pneumonia, alveolar damage, and pulmonary hemorrhage. The value of this article lies in the completeness and typicality of the imaging data, vivid hand-drawn illustrations of transmission pathways, and comprehensive literature review, all of which serve to enhance public understanding of plague and play an important warning role.


Assuntos
Peste , Tomografia Computadorizada por Raios X , Humanos , Peste/diagnóstico , China , Masculino , Evolução Fatal , Pulmão/diagnóstico por imagem , Pulmão/patologia , Yersinia pestis/isolamento & purificação , Animais , Marmota
5.
Vet Med Sci ; 10(4): e1532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952277

RESUMO

BACKGROUND: Antibodies have been proven effective as diagnostic agents for detecting zoonotic diseases. The variable domain of camel heavy chain antibody (VHH), as an antibody derivative, may be used as an alternative for traditional antibodies in existing immunodiagnostic reagents for detecting rapidly spreading infectious diseases. OBJECTIVES: To expedite the isolation of specific antibodies for diagnostic purposes, we constructed a semi-synthetic camel single domain antibody library based on the phage display technique platform (PDT) and verified the validity of this study. METHODS: The semi-synthetic single domain antibody sequences consist of two parts: one is the FR1-FR3 region amplified by RT-PCR from healthy camel peripheral blood lymphocytes (PBLs), and the other part is the CDR3-FR4 region synthesised as an oligonucleotide containing CDR3 randomised region. The two parts were fused by overlapping PCR, resulting in the rearranged variable domain of heavy-chain antibodies (VHHs). Y. pestis low-calcium response V protein (LcrV) is an optional biomarker to detect the Y. pestis infection. The semi-synthetic library herein was screened using recombinant (LcrV) as a target antigen. RESULTS: After four cycles of panning the library, four VHH binders targeting 1-270 aa residues of LcrV were isolated. The four VHH genes with unique sequences were recloned into an expression vector and expressed as VHH-hFc chimeric antibodies. The purified antibodies were identified and used to develop a lateral flow immunoassay (LFA) test strip using latex microspheres (LM) for the rapid and visual detection of Y. pestis infection. CONCLUSIONS: These data demonstrate the great potential of the semi-synthetic library for use in isolation of antigen-specific nanobodies and the isolated specific VHHs can be used in antigen-capture immunoassays.


Assuntos
Antígenos de Bactérias , Camelus , Anticorpos de Domínio Único , Yersinia pestis , Animais , Yersinia pestis/imunologia , Anticorpos de Domínio Único/imunologia , Antígenos de Bactérias/imunologia , Peste/diagnóstico , Peste/veterinária , Peste/imunologia , Imunoensaio/métodos , Imunoensaio/veterinária , Anticorpos Antibacterianos/imunologia
6.
Appl Environ Microbiol ; 90(8): e0099524, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39023266

RESUMO

Surveillance for animal plague was conducted in the Marmota himalayana plague focus of the Qinghai-Tibet Plateau from 2020 to 2023. A 22.89% positive rate of serum F1 antibody was detected in live-caught marmots, alongside a 43.40% incidence of Yersinia pestis isolation from marmot carcasses. Marmot carcasses infected with plague exhibited a significantly higher spleen-somatic index (P < 0.05). Twenty-one Y. pestis-specific phages were isolated, among which one Y. pestis lytic phage (AKS2022HT87GU_phi) was isolated from the bone marrow of a marmot carcass (no. AKS2022HT87) and was found to be symbiotic with Y. pestis. Microscopy revealed the coexistence of lysed and non-lysed colonies of Y. pestis AKS2022HT87. Genome-wide analysis showed that certain strains of the Y. pestis AKS2022HT87 carried phage DNA fragments consistent with phage AKS2022HT87GU_phi. The rare symbiotic relationship between a lytic phage and Y. pestis observed in vitro was highlighted in this study, laying the basis for further exploring the relationship between Y. pestis and its bacteriophages.IMPORTANCEBacteriophages and host bacteria commonly coexist in vivo or in soil environments through complex and interdependent microbial interactions. However, recapitulating this symbiotic state remains challenging in vitro due to limited medium nutrients. In this work, the natural symbiosis between Yersinia pestis and specific phages has been discovered in a Marmota himalayana specimen. Epidemiological analysis presented the characteristics of the Y. pestis and specific phages in the area with a strong plague epidemic. Crucially, comparative genomics has been conducted to analyze the genetic changes in both the Y. pestis and phages over different periods, revealing the dynamic and evolving nature of their symbiosis. These are the critical steps to study the mechanism of the symbiosis.


Assuntos
Bacteriófagos , Marmota , Peste , Simbiose , Yersinia pestis , Yersinia pestis/virologia , Marmota/microbiologia , Marmota/virologia , Peste/microbiologia , Animais , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Bacteriófagos/genética , China
7.
Nature ; 632(8023): 114-121, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987589

RESUMO

In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.


Assuntos
Fazendeiros , Genômica , Linhagem , Peste , Dinâmica Populacional , Yersinia pestis , Feminino , Humanos , Masculino , Cemitérios/história , Fazendeiros/história , Genoma Bacteriano/genética , História Antiga , Filogenia , Peste/epidemiologia , Peste/história , Peste/microbiologia , Peste/mortalidade , Países Escandinavos e Nórdicos/epidemiologia , Fatores de Tempo , Fatores de Virulência/genética , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação
8.
mBio ; 15(8): e0107524, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38958447

RESUMO

Yersinia pestis has recently evolved into a highly lethal flea-borne pathogen through the pseudogenization of extensive genes and the acquisition of exogenous plasmids. Particularly noteworthy are the newly acquired pPCP1 and pMT1 plasmids, which encode the virulence determinants Pla and Yersinia murine toxin (Ymt), crucial for subcutaneous infection and survival within flea vector of Y. pestis, respectively. This study reveals that Pla can cleave Ymt at K299 both in vivo and in vitro. Y. pestis expressing YmtK299A displays enhanced in vitro biofilm formation and increased blood survival, indicating significant roles of Pla-mediated Ymt cleavage in these phenotypes. Intriguingly, although both the ancestral form of Pla and the prevalent Pla-I259T variant in modern Y. pestis strains are capable of cleaving Ymt at K299, the cleavage efficiency of Pla-I259T is only half that of the ancestral variant. In subcutaneous infection, mice infected with Δymt::ymt-K299A show significantly prolonged survival compared to those infected with Δymt::ymt. Similarly, infection with Δpla::pla-I259T also results in extended survival compared to Δpla::pla infection. These data demonstrate that the I259T substitution of Pla mitigates the enhanced virulence of Y. pestis in mice caused by Pla-mediated Ymt cleavage, thereby prolonging the survival period of infected animals and potentially conferring advantages on the transmission of Y. pestis to the next host. These findings deepen our understanding of the intricate interplay between two newly acquired plasmids and shed light on the positive selection of the Pla-I259T mutation, providing new insights into the virulence dynamics and transmission mechanisms of Y. pestis. IMPORTANCE: The emergence of Y. pestis as a highly lethal pathogen is driven by extensive gene pseudogenization and acquisition of exogenous plasmids pPCP1 and pMT1. However, the interplay between these two plasmids during evolution remains largely unexplored. Our study reveals intricate interactions between Ymt and Pla, two crucial virulence determinants encoded on these plasmids. Pla-mediated cleavage of Ymt significantly decreases Y. pestis survival in mouse blood and enhances its virulence in mice. The prevalent Pla-I259T variant in modern strains displays reduced Ymt cleavage, thereby extending the survival of infected animals and potentially increasing strain transmissibility. Our findings shed light on the nuanced evolution of Y. pestis, wherein reduced cleavage efficiency is a positive selection force, shaping the pathogen's natural trajectory.


Assuntos
Fatores de Virulência , Yersinia pestis , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pestis/patogenicidade , Animais , Camundongos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ativadores de Plasminogênio/genética , Ativadores de Plasminogênio/metabolismo , Feminino , Peste/microbiologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Plasmídeos/genética , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
9.
PLoS One ; 19(7): e0305034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954719

RESUMO

Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 µg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.


Assuntos
Anticorpos Antibacterianos , Peste , Yersinia pestis , Animais , Humanos , Camundongos , Yersinia pestis/imunologia , Peste/imunologia , Peste/prevenção & controle , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Feminino , Afinidade de Anticorpos , Contramedidas Médicas , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças
10.
PLoS Negl Trop Dis ; 18(6): e0012252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935608

RESUMO

BACKGROUND: Plague, a zoonotic disease caused by Yersinia pestis, was responsible for 3 historical human pandemics that killed millions of people. It remains endemic in rodent populations in Africa, Asia, North America, and South America but human plague is rare in most of these locations. However, human plague is still highly prevalent in Madagascar, which typically records a significant part of all annual global cases. This has afforded an opportunity to study contemporary human plague in detail using various typing methods for Y. pestis. AIM: This review aims to summarize the methods that have been used to type Y. pestis in Madagascar along with the major discoveries that have been made using these approaches. METHODS: Pubmed and Google Scholar were used to search for the keywords: "typing Yersinia pestis Madagascar," "evolution Yersinia pestis Madagascar," and "diversity Yersinia pestis Madagascar." Eleven publications were relevant to our topic and further information was retrieved from references cited in those publications. RESULTS: The history of Y. pestis typing in Madagascar can be divided in 2 periods: the pre-genomics and genomics eras. During the pre-genomics era, ribotyping, direct observation of plasmid content and plasmid restriction fragment length polymorphisms (RFLP) were employed but only revealed a limited amount of diversity among Malagasy Y. pestis strains. Extensive diversity only started to be revealed in the genomics era with the use of clustered regularly interspaced palindromic repeats (CRISPR), multiple-locus variable number tandem repeats (VNTR) analysis (MLVA), and single-nucleotide polymorphisms (SNPs) discovered from whole genome sequences. These higher-resolution genotyping methods have made it possible to highlight the distribution and persistence of genotypes in the different plague foci of Madagascar (Mahajanga and the Central and Northern Highlands) by genotyping strains from the same locations across years, to detect transfers between foci, to date the emergence of genotypes, and even to document the transmission of antimicrobial resistant (AMR) strains during a pneumonic plague outbreak. Despite these discoveries, there still remain topics that deserve to be explored, such as the contribution of horizontal gene transfer to the evolution of Malagasy Y. pestis strains and the evolutionary history of Y. pestis in Madagascar. CONCLUSIONS: Genotyping of Y. pestis has yielded important insights on plague in Madagascar, particularly since the advent of whole-genome sequencing (WGS). These include a better understanding of plague persistence in the environment, antimicrobial AMR and multi-drug resistance in Y. pestis, and the person-to-person spread of pneumonic plague. Considering that human plague is still a significant public health threat in Madagascar, these insights can be useful for controlling and preventing human plague in Madagascar and elsewhere, and also are relevant for understanding the historical pandemics and the possible use of Y. pestis as a biological weapon.


Assuntos
Peste , Yersinia pestis , Yersinia pestis/genética , Yersinia pestis/classificação , Yersinia pestis/isolamento & purificação , Madagáscar/epidemiologia , Peste/microbiologia , Peste/epidemiologia , Humanos , Animais , Genótipo , Técnicas de Genotipagem/métodos
11.
Mol Biol Rep ; 51(1): 722, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829419

RESUMO

BACKGROUND: Yersinia pestis is a bacterium that causes the disease plague. It has caused the deaths of many people throughout history. The bacterium possesses several virulence factors (pPla, pFra, and PYV). PFra plasmid encodes fraction 1 (F1) capsular antigen. F1 protein protects the bacterium against host immune cells through phagocytosis process. This protein is specific for Y. pestis. Many diagnostic techniques are based on molecular and serological detection and quantification of F1 protein in different food and clinical samples. Aptamers are small nucleic acid sequences that can act as specific ligands for many targets.This study, aimed to isolate the high-affinity ssDNA aptamers against F1 protein. METHODS AND RESULTS: In this study, SELEX was used as the main strategy in screening aptamers. Moreover, enzyme-linked aptamer sorbent assay (ELASA) and surface plasmon resonance (SPR) were used to determine the affinity and specificity of obtained aptamers to F1 protein. The analysis showed that among the obtained aptamers, the three aptamers of Yer 21, Yer 24, and Yer 25 were selected with a KD value of 1.344E - 7, 2.004E - 8, and 1.68E - 8 M, respectively. The limit of detection (LoD) was found to be 0.05, 0.076, and 0.033 µg/ml for Yer 21, Yer 24, and Yer 25, respectively. CONCLUSION: This study demonstrated that the synthesized aptamers could serve as effective tools for detecting and analyzing the F1 protein, indicating their potential value in future diagnostic applications.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas de Bactérias , Técnica de Seleção de Aptâmeros , Yersinia pestis , Yersinia pestis/genética , Técnica de Seleção de Aptâmeros/métodos , Proteínas de Bactérias/genética , Ressonância de Plasmônio de Superfície/métodos , Humanos , Peste/diagnóstico , Peste/microbiologia , Antígenos de Bactérias
12.
Front Immunol ; 15: 1397579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835755

RESUMO

Background: Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods: In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results: The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions: This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.


Assuntos
Camundongos Endogâmicos BALB C , Vacina contra a Peste , Peste , Yersinia pestis , Animais , Feminino , Peste/prevenção & controle , Peste/imunologia , Masculino , Yersinia pestis/imunologia , Vacina contra a Peste/imunologia , Vacina contra a Peste/administração & dosagem , Camundongos , Anticorpos Antibacterianos/sangue , Caracteres Sexuais , Fatores Sexuais , Modelos Animais de Doenças , Eficácia de Vacinas
13.
PLoS Biol ; 22(5): e3002625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771885

RESUMO

Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.


Assuntos
Pediculus , Peste , Yersinia pestis , Animais , Yersinia pestis/patogenicidade , Yersinia pestis/fisiologia , Pediculus/microbiologia , Pediculus/fisiologia , Humanos , Peste/transmissão , Peste/microbiologia , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Mordeduras e Picadas de Insetos/microbiologia , Feminino , Masculino
14.
Analyst ; 149(13): 3564-3574, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38717518

RESUMO

Field-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest. Notwithstanding these technological advancements, low-cost, portable systems still struggle to confidently identify clinically significant organisms of interest, such as bacteria, viruses, and proteinaceous toxins, due to the limitations in resolving power. To overcome these limitations, we developed a novel multidimensional mass fingerprinting technique that uses tandem mass spectrometry to increase the chemical specificity for low-resolution mass spectral profiles. We demonstrated the method's capabilities for differentiating four different bacteria, including attentuated strains of Yersinia pestis. This approach allowed for the accurate (>92%) identification of each organism at the strain level using de-resolved matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) data to mimic the performance characteristics of miniaturized mass spectrometers. This work demonstrates that low-resolution mass spectrometers, equipped with tandem MS acquisition modes, can accurately identify clinically relevant bacteria. These findings support the future application of these technologies for field-forward and point-of-care applications where high-performance mass spectrometers would be cost-prohibitive or otherwise impractical.


Assuntos
Espectrometria de Massas em Tandem , Yersinia pestis , Yersinia pestis/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Bactérias/isolamento & purificação
15.
Virus Res ; 346: 199395, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782263

RESUMO

The plague, caused by Yersinia pestis, is a natural focal disease and the presence of Y. pestis in the environment is a critical ecological concern worldwide. The role of Y. pestis phages in the ecological life cycle of the plague is crucial. Previously, a temperature-sensitive phage named vB_YpM_HQ103 was isolated from plague foci in Yunnan province, China. Upon infecting the EV76 strain of Y. pestis, vB_YpM_HQ103 exhibits lysogenic behavior at 21 °C and lytic behavior at 37 °C. Various methods including continuous passage lysogenic tests, in vitro lysis tests, comparative genomic assays, fluorescence quantitative PCR and receptor identification tests were employed to demonstrate that the lysogenic life cycle of this phage is applicable to wild Y. pestis strains; its lysogeny is pseudolysogenic (carrying but not integrating), allowing it to replicate and proliferate within Y. pestis. Furthermore, we have identified the outer membrane protein OmpA of Y. pestis as the receptor for phage infection. In conclusion, our research provides insight into the characteristics and receptors of a novel Y. pestis phage infection with a pseudolysogenic cycle. The findings of this study enhance our understanding of Y. pestis phages and plague microecology, offering valuable insights for future studies on the conservation and genetic evolution of Y. pestis in nature.


Assuntos
Bacteriófagos , Genoma Viral , Lisogenia , Peste , Yersinia pestis , Yersinia pestis/virologia , Yersinia pestis/genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Peste/microbiologia , China , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
16.
mBio ; 15(6): e0012424, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38722159

RESUMO

Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE: Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.


Assuntos
Biofilmes , Fosfolipase D , Sifonápteros , Yersinia pestis , Yersinia pestis/enzimologia , Fosfolipase D/metabolismo , Sifonápteros/microbiologia , Biofilmes/crescimento & desenvolvimento , Peste/microbiologia , Peste/transmissão , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/microbiologia , Matriz Extracelular de Substâncias Poliméricas/ultraestrutura , Polissacarídeos/metabolismo , Microscopia Eletrônica de Transmissão , Proteoma/metabolismo , Animais , Camundongos , Lipídeos/análise
17.
Viruses ; 16(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793629

RESUMO

Plague is an endemic infectious disease caused by Yersinia pestis. In this study, we isolated fourteen phages with similar sequence arrangements to phage 186; these phages exhibited different lytic abilities in Enterobacteriaceae strains. To illustrate the phylogenetic relationships and evolutionary relationships between previously designated 186-type phages, we analysed the complete sequences and important genes of the phages, including whole-genome average nucleotide identity (ANI) and collinearity comparison, evolutionary analysis of four conserved structural genes (V, T, R, and Q genes), and analysis of the regulatory genes (cI, apl, and cII) and integrase gene (int). Phylogenetic analysis revealed that thirteen of the newly isolated phages belong to the genus Eganvirus and one belongs to the genus Felsduovirus in the family Peduoviridae, and these Eganvirus phages can be roughly clustered into three subgroups. The topological relationships exhibited by the whole-genome and structural genes seemed similar and stable, while the regulatory genes presented different topological relationships with the structural genes, and these results indicated that there was some homologous recombination in the regulatory genes. These newly isolated 186-type phages were mostly isolated from dogs, suggesting that the resistance of Canidae to Y. pestis infection may be related to the wide distribution of phages with lytic capability.


Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Yersinia pestis , Yersinia pestis/virologia , Yersinia pestis/genética , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Animais , Evolução Molecular , Cães , Peste/microbiologia
18.
PLoS Negl Trop Dis ; 18(5): e0012167, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701065

RESUMO

BACKGROUND: Plague, caused by the bacterium Yersinia pestis, is a zoonotic disease that poses considerable threats to human health. Nucleic acid tests are crucial for plague surveillance and the rapid detection of Y. pestis. However, inhibitors in complex samples such as soil and animal tissues often hamper nucleic acid detection, leading to a reduced rate of identifying low concentrations of Y. pestis. To address this challenge, we developed a sensitive and specific droplet digital polymerase chain reaction (ddPCR) assay for detecting Y. pestis DNA from soil and animal tissue samples. METHODS: Three genes (ypo2088, caf1, and pla) from Y. pestis were used to develop a multi-target ddPCR assay. The limits of detection (LoD), reproducibility, and specificity were assessed for bacterial genomic DNA samples. The ability of the assay to detect low concentrations of Y. pestis DNA from simulated soil and mouse liver tissue samples was respectively evaluated and compared with that of quantitative real-time PCR (qPCR). RESULTS: The results showed that the ddPCR LoDs ranged from 6.2 to 15.4 copies/reaction for the target genes, with good reproducibility and high specificity for Y. pestis. By testing 130 soil and mouse liver tissue samples spiked with Y. pestis, the ddPCR assay exhibited a better sensitivity than that of the qPCR assay used in the study, with LoDs of 102 colony forming units (CFU)/100 mg soil and 103 CFU/20 mg liver. Moreover, the assay presented good quantitative linearity (R2 = 0.99) for Y. pestis at 103-106 CFU/sample for soil and liver samples. CONCLUSION: The ddPCR assay presented good performance for detecting Y. pestis DNA from soil and mouse tissue samples, showing great potential for improving the detection rate of low concentrations of Y. pestis in plague surveillance and facilitating the early diagnosis of plague cases.


Assuntos
Peste , Sensibilidade e Especificidade , Microbiologia do Solo , Yersinia pestis , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação , Animais , Peste/diagnóstico , Peste/microbiologia , Camundongos , Reação em Cadeia da Polimerase/métodos , DNA Bacteriano/genética , Reprodutibilidade dos Testes , Proteínas de Bactérias/genética , Fígado/microbiologia , Limite de Detecção , Humanos
19.
Vector Borne Zoonotic Dis ; 24(8): 489-498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775074

RESUMO

Background: The control and prevention of rodent-borne diseases are mainly based on our knowledge of ecology and the infectious status of their reservoir hosts. This study aimed to evaluate the prevalence of Francisella tularensis, Yersinia pestis, and arenavirus infections in small mammals and to assess the potential of disease occurrence in East Azerbaijan, northwest of Iran, in 2017 and 2018. Methods: Spleen and lung samples were obtained from all trapped small mammals. The real-time quantitative PCR (qPCR) method was used to detect nucleic acid sequences of F. tularensis, Y. pestis, and arenaviruses. Serum samples were tested for antibodies indicating the host response to F. tularensis and Y. pestis infections using the standard tube agglutination test and enzyme-linked immunosorbent assay (ELISA), respectively. Results: A total of 205 rodents, four Eulipotyphla, and one carnivore were captured. The most common rodent species captured (123 of 205 rodents, 60%) belonged to the genus Meriones (mainly Persian jird, Meriones persicus). In total, 317 fleas were removed from trapped animals. Flea species belonged to Xenopsylla buxtoni, Xenopsylla nuttalli, Stenoponia tripectinata, Paraceras melis, Ctenophthalmus rettigi smiti, Rhadinopsylla bivirgis, Paradoxopsyllus grenieri, and Nosopsyllus iranus. Using the qPCR tests, five spleen samples from M. persicus were positive for F. tularensis. The qPCR tests were negative for the detection of Y. pestis and arenaviruses. Finally, all serum samples tested were negative for antibodies against Y. pestis and F. tularensis. Conclusions: F. tularensis was the only zoonotic agent detected in rodents captured in East Azerbaijan. However, the diversity of trapped rodents and fleas provides the potential for the spread of various rodent-borne viral and bacterial diseases in the studied areas.


Assuntos
Infecções por Arenaviridae , Francisella tularensis , Peste , Roedores , Tularemia , Yersinia pestis , Animais , Irã (Geográfico)/epidemiologia , Yersinia pestis/isolamento & purificação , Yersinia pestis/genética , Tularemia/epidemiologia , Tularemia/veterinária , Peste/epidemiologia , Peste/veterinária , Francisella tularensis/isolamento & purificação , Francisella tularensis/genética , Infecções por Arenaviridae/epidemiologia , Infecções por Arenaviridae/veterinária , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/virologia , Doenças dos Roedores/microbiologia
20.
Front Immunol ; 15: 1277526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605961

RESUMO

This study evaluated a depot-formulated cytokine-based adjuvant to improve the efficacy of the recombinant F1V (rF1V) plague vaccine and examined the protective response following aerosol challenge in a murine model. The results of this study showed that co-formulation of the Alhydrogel-adsorbed rF1V plague fusion vaccine with the depot-formulated cytokines recombinant human interleukin 2 (rhuIL-2) and/or recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) significantly enhances immunogenicity and significant protection at lower antigen doses against a lethal aerosol challenge. These results provide additional support for the co-application of the depot-formulated IL-2 and/or GM-CSF cytokines to enhance vaccine efficacy.


Assuntos
Vacina contra a Peste , Yersinia pestis , Humanos , Animais , Camundongos , Citocinas , Antígenos de Bactérias , Vacinas Sintéticas , Aerossóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA