Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.141
Filtrar
1.
Nat Commun ; 15(1): 3994, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734761

RESUMO

NADPH oxidase 5 (NOX5) catalyzes the production of superoxide free radicals and regulates physiological processes from sperm motility to cardiac rhythm. Overexpression of NOX5 leads to cancers, diabetes, and cardiovascular diseases. NOX5 is activated by intracellular calcium signaling, but the underlying molecular mechanism of which - in particular, how calcium triggers electron transfer from NADPH to FAD - is still unclear. Here we capture motions of full-length human NOX5 upon calcium binding using single-particle cryogenic electron microscopy (cryo-EM). By combining biochemistry, mutagenesis analyses, and molecular dynamics (MD) simulations, we decode the molecular basis of NOX5 activation and electron transfer. We find that calcium binding to the EF-hand domain increases NADPH dynamics, permitting electron transfer between NADPH and FAD and superoxide production. Our structural findings also uncover a zinc-binding motif that is important for NOX5 stability and enzymatic activity, revealing modulation mechanisms of reactive oxygen species (ROS) production.


Assuntos
Cálcio , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , NADPH Oxidase 5 , NADP , Humanos , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/genética , NADPH Oxidase 5/química , Cálcio/metabolismo , NADP/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Superóxidos/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Transporte de Elétrons , Ativação Enzimática , Sítios de Ligação
2.
Front Cell Infect Microbiol ; 14: 1390104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741891

RESUMO

Introduction: Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods: Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results: The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion: Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.


Assuntos
Apoptose , Microbioma Gastrointestinal , Hesperidina , Rim , Zinco , Animais , Hesperidina/farmacologia , Suínos , Zinco/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Apoptose/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732193

RESUMO

One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.


Assuntos
Carbono , Técnicas de Reprodução Assistida , Humanos , Carbono/metabolismo , Vitamina B 12/metabolismo , Fertilização in vitro/métodos , Feminino , Homocisteína/metabolismo , Homocisteína/sangue , Ácido Fólico/metabolismo , Suplementos Nutricionais , Colina/metabolismo , Zinco/metabolismo , Betaína/metabolismo , Biomarcadores
4.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38717304

RESUMO

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Assuntos
Simulação de Dinâmica Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina , Zinco , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Zinco/química , Zinco/metabolismo , Ligantes , Cálcio/química , Cálcio/metabolismo , Teoria da Densidade Funcional , Sítios de Ligação , Ligação Proteica , Dedos de Zinco , Cafeína/química , Cafeína/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos
5.
Funct Plant Biol ; 512024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38753957

RESUMO

Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.


Assuntos
Homeostase , Hordeum , Raízes de Plantas , Potássio , Salinidade , Zinco , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Homeostase/efeitos dos fármacos , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Estresse Salino/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
6.
Nat Commun ; 15(1): 4218, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760331

RESUMO

DNAzymes - synthetic enzymes made of DNA - have long attracted attention as RNA-targeting therapeutic agents. Yet, as of now, no DNAzyme-based drug has been approved, partially due to our lacking understanding of their molecular mode of action. In this work we report the solution structure of 8-17 DNAzyme bound to a Zn2+ ion solved through NMR spectroscopy. Surprisingly, it turned out to be very similar to the previously solved Pb2+-bound form (catalytic domain RMSD = 1.28 Å), despite a long-standing literature consensus that Pb2+ recruits a different DNAzyme fold than other metal ion cofactors. Our follow-up NMR investigations in the presence of other ions - Mg2+, Na+, and Pb2+ - suggest that at DNAzyme concentrations used in NMR all these ions induce a similar tertiary fold. Based on these findings, we propose a model for 8-17 DNAzyme interactions with metal ions postulating the existence of only a single catalytically-active structure, yet populated to a different extent depending on the metal ion cofactor. Our results provide structural information on the 8-17 DNAzyme in presence of non-Pb2+ cofactors, including the biologically relevant Mg2+ ion.


Assuntos
DNA Catalítico , Chumbo , Magnésio , Zinco , DNA Catalítico/química , DNA Catalítico/metabolismo , Magnésio/metabolismo , Magnésio/química , Zinco/metabolismo , Zinco/química , Chumbo/química , Chumbo/metabolismo , Conformação de Ácido Nucleico , Domínio Catalítico , Modelos Moleculares , Sódio/metabolismo , Sódio/química , Metais/metabolismo , Metais/química , Espectroscopia de Ressonância Magnética , Íons
7.
Med Sci Monit ; 30: e942946, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698627

RESUMO

BACKGROUND Cryopreservation preserves male fertility, crucial in oncology, advanced age, and infertility. However, it damages sperm motility, membrane, and DNA. Zinc (Zn), an antioxidant, shows promise in improving sperm quality after thawing, highlighting its potential as a cryoprotectant in reproductive medicine. MATERIAL AND METHODS Gradient concentration of ZnSO4 (0, 12.5, 25, 50, and 100 µM) was added in the Glycerol-egg yolk-citrate (GEYC) cryopreservative medium as an extender. Alterations in sperm viability and motility parameters after cryopreservation were detected in each group. Sperm plasma membrane integrity (PMI), acrosome integrity (ACR), DNA fragment index (DFI), and changes in sperm mitochondrial function were examined, including: mitochondrial potential (MMP), sperm reactive oxygen species (ROS), and sperm ATP. RESULTS We found that 50 µM ZnSO4 was the most effective for the curvilinear velocity (VCL) and the average path velocity (VAP) of sperm after cryo-resuscitation. Compared to the Zn-free group, sperm plasma membrane integrity (PMI) was increased, DNA fragmentation index (DFI) was decreased, reactive oxygen species (ROS) was reduced, and mitochondrial membrane potential (MMP) was increased after cryorevival in the presence of 50 µM ZnSO4. CONCLUSIONS Zn ion is one of the antioxidants in the cell. The results of our current clinical study are sufficient to demonstrate that Zn can improve preserves sperm quality during cryopreservation when added to GEYC. The addition of 50 µM ZnSO4 increased curve velocity, mean path velocity, sperm survival (or plasma membrane integrity), and mitochondrial membrane potential while reducing ROS production and DNA breaks compared to GEYC thawed without ZnSO4.


Assuntos
Criopreservação , Crioprotetores , Fragmentação do DNA , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Zinco , Masculino , Criopreservação/métodos , Humanos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Crioprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Preservação do Sêmen/métodos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Análise do Sêmen , Sobrevivência Celular/efeitos dos fármacos , Adulto , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Congelamento
8.
Nat Commun ; 15(1): 4036, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740750

RESUMO

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Assuntos
Proteínas de Bactérias , Níquel , Níquel/metabolismo , Níquel/química , Animais , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Zinco/metabolismo , Zinco/química , Mariposas/microbiologia , Urease/metabolismo , Urease/antagonistas & inibidores , Transporte Biológico
9.
Proc Natl Acad Sci U S A ; 121(21): e2401738121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743623

RESUMO

Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.


Assuntos
Escherichia coli , Ferro , Manganês , Manganês/metabolismo , Ferro/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Zinco/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/metabolismo , Oxirredução , Metais/metabolismo
10.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564870

RESUMO

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Assuntos
Sedum , Poluentes do Solo , Zinco/metabolismo , Cádmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte de Íons , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
11.
Biol Pharm Bull ; 47(4): 796-800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583951

RESUMO

Previous reports indicated that zinc deficiency could increase the risk of infectious diseases and developmental retardation in children. In experimental study, it has been reported that zinc deficiency during the embryonic period inhibited fetal growth, and disturbed neural differentiation and higher brain function later in adulthood. Although it has been suggested that zinc deficiency during development can have significant effects on neuronal differentiation and maturation, the molecular mechanisms of the effects of low zinc on neuronal differentiation during development have not been elucidated in detail. This study was performed to determine the effects of low zinc status on neurite outgrowth and collapsin response mediator protein 2 (CRMP2) signal pathway. Low zinc suppressed neurite outgrowth, and caused increase levels of phosphorylated CRMP2 (pCRMP2) relative to CRMP2, and decrease levels of phosphorylated glycogen synthase kinase 3ß (pGSK3ß) relative to GSK3ß in human neuroblastoma cell line (SH-SY5Y) cells on days 1, 2, and 3 of neuronal differentiation induction. Neurite outgrowth inhibited by low zinc was restored by treatment with the GSK3ß inhibitor CHIR99021. These results suggested that low zinc causes neurite outgrowth inhibition via phosphorylation of CRMP2 by GSK3ß. In conclusion, this study is the first to demonstrate that CRMP signaling is involved in the suppression of neurite outgrowth by low zinc.


Assuntos
Neuritos , Neuroblastoma , Criança , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Neuritos/metabolismo , Neuroblastoma/metabolismo , Fosforilação , Transdução de Sinais , Zinco/metabolismo
12.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619879

RESUMO

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Assuntos
Poluentes Ambientais , Fígado Gorduroso , Hepatopatias Alcoólicas , Bifenilos Policlorados , Masculino , Camundongos , Animais , Multiômica , Camundongos Endogâmicos C57BL , Etanol/toxicidade , Etanol/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Zinco/metabolismo , Tirosina/metabolismo
13.
Pol Merkur Lekarski ; 52(2): 178-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642353

RESUMO

OBJECTIVE: Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Isatin derivatives as cap group joined by mono amide linker as required to act as HDAC inhibitors. PATIENTS AND METHODS: Materials and Methods: The utilization of sulfonamide as zinc binding group joined by N-alkylation reaction with ethyl-bromo hexanoate as linker group that joined by amide reaction with Isatin derivatives as cap groups which known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS: Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. the compounds were synthesized and characterized by successfully by ART-FTIR, NMR and ESI- Ms. Assessed for their cytotoxic activity against human colon adenocarcinoma MCF-7 (IC50, I=105.15, II=60.00, III=54.11, IV=56.57, vorinostat=28.41) and hepatoblastoma HepG2 (IC50, I=63.91, II=135.18, III=118.85, IV=51.46, vorinostat=37.50). Most of them exhibited potent HDAC inhibitory activity and significant cytotoxicity. CONCLUSION: Conclusions: The synthesized compounds (I, II, III and IV) showed cytotoxicity toward MCF-7 and HepG2 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Isatina , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Vorinostat/farmacologia , Isatina/farmacologia , Linhagem Celular Tumoral , Amidas/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Sulfonamidas/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Proliferação de Células , Estrutura Molecular
14.
J Inorg Biochem ; 256: 112566, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657303

RESUMO

Serine proteases are important enzymes widely used in commercial products and industry. Recently, we identified a new serine protease from the desert bacterium Bacillus subtilis ZMS-2 that showed enhanced activity in the presence of Zn2+, Ag+, or H2O2. However, the molecular basis underlying this interesting property is unknown. Here, we report comparative studies between the ZMS-2 protease and its homolog, subtilisin E (SubE), from B. subtilis ATCC 6051. In the absence of Zn2+, Ag+, or H2O2, both enzymes showed the same level of proteolytic activity, but in the presence of Zn2+, Ag+, or H2O2, ZMS-2 displayed increased activity by 22%, 8%, and 14%, whereas SubE showed decreased activity by 16%, 12%, and 9%, respectively. In silico studies showed that both proteins have almost identical amino acid sequences and folding structures, except for two amino acids located in the protruding loops of the proteins. ZMS-2 contains Ser236 and Ser268, whereas SubE contains Thr236 and Thr268. Replacing Ser236 or Ser268 in ZMS-2 with threonine resulted in variants whose activities were not enhanced by Zn2+ or Ag+. However, this single mutation did not affect the enhancement by H2O2. This finding may be used as a basis for engineering better proteases for industrial uses.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Peróxido de Hidrogênio , Zinco , Peróxido de Hidrogênio/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Zinco/química , Zinco/metabolismo , Serina Proteases/metabolismo , Serina Proteases/química , Serina Proteases/genética , Prata/química , Sequência de Aminoácidos
15.
PLoS Biol ; 22(4): e3002259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683873

RESUMO

Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.


Assuntos
Antituberculosos , Modelos Animais de Doenças , Macrófagos , Mycobacterium tuberculosis , Oxidiazóis , Tuberculose , Zinco , Animais , Oxidiazóis/farmacologia , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Zinco/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Tuberculose/tratamento farmacológico , Camundongos Endogâmicos C57BL , Feminino , Sinergismo Farmacológico
16.
Mar Genomics ; 75: 101109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603950

RESUMO

In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 µg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 µg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 µg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.


Assuntos
Crassostrea , Transcriptoma , Poluentes Químicos da Água , Zinco , Animais , Crassostrea/genética , Crassostrea/metabolismo , Zinco/metabolismo , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo
17.
Chem Biol Interact ; 394: 110992, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579923

RESUMO

Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The pH dependencies for several kinetic parameters are shifted from pK values for wild-type ADH of 7.3-8.1 to values for H44R/H48Q ADH of 8.0-9.6, and are assigned to the water or alcohol bound to the catalytic zinc. It appears that the rate of binding of NAD+ is electrostatically favored with zinc-hydroxide whereas binding of NADH is faster with neutral zinc-water. The pH dependencies of catalytic efficiencies (V/EtKm) for ethanol oxidation and acetaldehyde reduction are similarly controlled by deprotonation and protonation, respectively. The substitutions make an enzyme that resembles the homologous horse liver H51Q ADH, which has Arg-47 and Gln-51 and exhibits similar pK values. In the wild-type ADHs, it appears that His-48 (or His-51) in the proton relay systems linked to the catalytic zinc ligands modulate catalytic efficiencies.


Assuntos
Álcool Desidrogenase , Domínio Catalítico , Histidina , Saccharomyces cerevisiae , Acetaldeído/metabolismo , Acetaldeído/química , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/química , Substituição de Aminoácidos , Dietil Pirocarbonato/química , Dietil Pirocarbonato/farmacologia , Etanol/metabolismo , Histidina/metabolismo , Histidina/química , Concentração de Íons de Hidrogênio , Cinética , NAD/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo , Zinco/química
18.
Metallomics ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38599629

RESUMO

Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.


Assuntos
Proteus mirabilis , Estruvita , Cálculos Urinários , Zinco , Estruvita/química , Zinco/metabolismo , Zinco/química , Cálculos Urinários/química , Cálculos Urinários/metabolismo , Cálculos Urinários/microbiologia , Proteus mirabilis/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatos/química , Íons , Compostos de Magnésio/metabolismo , Compostos de Magnésio/química , Cristalização
19.
J Hazard Mater ; 471: 134308, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631255

RESUMO

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.


Assuntos
Arabidopsis , Camellia sinensis , Homeostase , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Zinco , Zinco/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas , Biodegradação Ambiental , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética
20.
Proc Natl Acad Sci U S A ; 121(19): e2321216121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687796

RESUMO

Cells must replicate their genome quickly and accurately, and they require metabolites and cofactors to do so. Ionic zinc (Zn2+) is an essential micronutrient that is required for hundreds of cellular processes, including DNA synthesis and adequate proliferation. Deficiency in this micronutrient impairs DNA synthesis and inhibits proliferation, but the mechanism is unknown. Using fluorescent reporters to track single cells via long-term live-cell imaging, we find that Zn2+ is required at the G1/S transition and during S phase for timely completion of S phase. A short pulse of Zn2+ deficiency impairs DNA synthesis and increases markers of replication stress. These markers of replication stress are reversed upon resupply of Zn2+. Finally, we find that if Zn2+ is chelated during the mother cell's S phase, daughter cells enter a transient quiescent state, maintained by sustained expression of p21, which disappears upon reentry into the cell cycle. In summary, short pulses of mild Zn2+ deficiency in S phase specifically induce replication stress, which causes downstream proliferation impairments in daughter cells.


Assuntos
Proliferação de Células , Replicação do DNA , Fase S , Zinco , Zinco/metabolismo , Zinco/deficiência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA