Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Cells ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38727316

RESUMO

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of ß-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-ß-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.


Assuntos
Citoesqueleto de Actina , Movimento Celular , Transição Epitelial-Mesenquimal , alfa Catenina , Humanos , Citoesqueleto de Actina/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Vinculina/metabolismo , Junções Aderentes/metabolismo , Adesão Celular , Actinina/metabolismo , Linhagem Celular Tumoral , Zixina/metabolismo , Fosforilação , Integrinas/metabolismo , Animais , Células Epiteliais/metabolismo
2.
Mol Biol Cell ; 35(5): ar65, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507238

RESUMO

α-catenin (α-cat) displays force-dependent unfolding and binding to actin filaments through direct and indirect means, but features of adherens junction structure and function most vulnerable to loss of these allosteric mechanisms have not been directly compared. By reconstituting an α-cat F-actin-binding domain unfolding mutant known to exhibit enhanced binding to actin (α-cat-H0-FABD+) into α-cat knockout Madin Darby Canine Kidney (MDCK) cells, we show that partial loss of the α-cat catch bond mechanism (via an altered H0 α-helix) leads to stronger epithelial sheet integrity with greater colocalization between the α-cat-H0-FABD+ mutant and actin. α-cat-H0-FABD+ -expressing cells are less efficient at closing scratch-wounds, suggesting reduced capacity for more dynamic cell-cell coordination. Evidence that α-cat-H0-FABD+ is equally accessible to the conformationally sensitive α18 antibody epitope as WT α-cat and shows similar vinculin recruitment suggests this mutant engages lower tension cortical actin networks, as its M-domain is not persistently open. Conversely, α-cat-M-domain salt-bridge mutants with persistent recruitment of vinculin and phosphorylated myosin light chain show only intermediate monolayer adhesive strengths, but display less directionally coordinated and thereby slower migration speeds during wound-repair. These data show α-cat M- and FABD-unfolding mutants differentially impact cell-cell cohesion and migration properties, and suggest signals favoring α-cat-cortical actin interaction without persistent M-domain opening may improve epithelial monolayer strength through enhanced coupling to lower tension actin networks.


Assuntos
Citoesqueleto de Actina , Actinas , Movimento Celular , Células Epiteliais , alfa Catenina , Cães , Animais , alfa Catenina/metabolismo , alfa Catenina/genética , Células Madin Darby de Rim Canino , Actinas/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto de Actina/metabolismo , Ligação Proteica , Domínios Proteicos , Mutação , Junções Aderentes/metabolismo , Desdobramento de Proteína , Adesão Celular/fisiologia , Vinculina/metabolismo
3.
J Cell Mol Med ; 28(4): e18133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332509

RESUMO

The study aimed to investigate the regulatory mechanism of intracellular tension signaling in endplate chondrocytes and its impact on extracellular matrix synthesis. Human endplate chondrocytes were subjected to tension load using Flexcell FX-5000™, and changes in phenotype, morphology, and the expression of Hippo signaling pathway and α-Catenin were assessed through various techniques. Through the overexpression of YAP and inhibition of α-Catenin, the study clarified the intracellular tension signaling pathway and its regulation of extracellular matrix synthesis in endplate cartilage. In vitro-cultured human endplate chondrocytes significantly suppressed phenotype-related genes and proteins, accompanied by distinct changes in cytoskeleton morphology. Tension activation resulted in the substantial activation of the Hippo pathway, increased phosphorylation of YAP, and reduced nuclear translocation of YAP. YAP overexpression alleviated the inhibitory effect of tension on extracellular matrix synthesis in endplate chondrocytes. Tension also upregulated the expression of α-Catenin in endplate chondrocytes, which was attenuated by inhibiting α-Catenin expression, thereby reducing the impact of tension on cytoskeletal morphology and YAP nuclear translocation. Taken together, the α-Catenin/actin skeleton/Hippo-coupled network is a crucial signaling pathway for tension signaling in endplate chondrocytes, providing potential therapeutic targets for the treatment of endplate cartilage degeneration.


Assuntos
Condrócitos , Via de Sinalização Hippo , Humanos , Condrócitos/metabolismo , Actinas/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo , Cateninas/metabolismo , Cartilagem/metabolismo , Fenótipo , Esqueleto/metabolismo
4.
Biochem Biophys Res Commun ; 682: 308-315, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37837751

RESUMO

Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.


Assuntos
Caderinas , Células Epiteliais , alfa Catenina/metabolismo , Adesão Celular/fisiologia , Caderinas/metabolismo , Células Epiteliais/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1618-1629, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37715489

RESUMO

The downregulation of adhesion molecule catenin alpha-like 1 (CTNNAL1) in airway epithelial cells of asthma patients and house dust mite (HDM)-induced asthma animal models was illustrated in our previous study. It is assumed to contribute to airway inflammation and mucus hypersecretion. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. CTNNAL1-silenced female mice exhibit a decreased level of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated and ATP-gated Cl - channel that correlates with mucus hypersecretion. Our previous study demonstrated that ROCK1 expression decreases but ROCK2 expression increases in the lungs of a CTNNAL1-silenced mouse model. Inhibition of ROCK1 leads to a reduction in CFTR expression in CTNNAL1-overexpressing and CTNNAL1-silenced human bronchial epithelial (HBE) cells. It has been reported that ROCK1 is a downstream target of RhoA and that activation of RhoA increases CFTR expression after CTNNAL1 deficiency in vitro and in vivo. The above results indicate that CTNNAL1 regulates CFTR expression through the ROCK1 pathway. In addition, the expression of CFTR-associated ligand (CAL) is increased after CTNNAL1 silencing, and immunoprecipitation results confirm the interaction between ROCK1 and CAL. Inhibition of CAL does not influence ROCK1 expression but increases CFTR expression in CTNNAL1-silenced HBE cells. These data suggest that CTNNAL1 deficiency decreases CFTR expression in the HDM-induced asthma mouse model through the ROCK1-CAL signaling pathway.


Assuntos
Asma , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Feminino , Humanos , Camundongos , alfa Catenina/metabolismo , Asma/induzido quimicamente , Asma/genética , Asma/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Pyroglyphidae/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Transdução de Sinais
6.
Cancer Gene Ther ; 30(12): 1624-1635, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37679528

RESUMO

α-Catenin plays a critical role in tissue integrity, repair, and embryonic development. However, the post-translational modifications of α-catenin and the correlative roles in regulating cancer progression remain unclear. Here, we report that α-catenin is acetylated by p300, and identify three acetylation sites, K45, K866, and K881. Conversely, α-catenin acetylation can be reversed by deacetylase HDAC6. Mechanistically, α-catenin acetylation releases the transcriptional coactivator Yes-associated protein 1 (Yap1) by blocking the interaction between α-catenin and Yap1, and promotes the accumulation of Yap1 in the nucleus. Through this mechanism, acetylation weakens the capacity of α-catenin to inhibit breast cancer cell proliferation and tumor growth in mice. Meanwhile, we show that CDDP induces acetylation of α-catenin, and acetylated α-catenin resists the apoptosis under CDDP conditions. Additionally, acetylation inhibits the proteasome-dependent degradation of α-catenin, thus enhancing the stability of α-catenin for storage. Taken together, our results demonstrate that α-catenin can be acetylated, an event that is key for the subcellular distribution of Yap1 and subsequent facilitation of breast tumorigenesis.


Assuntos
Neoplasias da Mama , beta Catenina , Animais , Camundongos , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , alfa Catenina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Biol Macromol ; 242(Pt 3): 124867, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201886

RESUMO

ß-CATENIN is an evolutionarily conserved multifunctional molecule that maintains cell adhesion as a cell junction protein to safeguard the integrity of the mammalian blood-testes barrier, and also regulates cell proliferation and apoptosis as a key signaling molecule in the WNT/ß-CATENIN signaling pathway. In the crustacean Eriocheir sinensis, Es-ß-CATENIN has been shown to be involved in spermatogenesis, but the testes of E. sinensis have large and well-defined structural differences from those of mammals, and the impact of Es-ß-CATENIN in them is still unknown. In the present study, we found that Es-ß-CATENIN, Es-α-CATENIN and Es-ZO-1 interact differently in the testes of the crab compared to mammals. In addition, defective Es-ß-CATENIN resulted in increased Es-α-CATENIN protein expression levels, distorted and deformed F-ACTIN, and disturbed localization of Es-α-CATENIN and Es-ZO-1, leading to loss of hemolymph-testes barrier integrity and impaired sperm release. In addition to this, we also performed the first molecular cloning and bioinformatics analysis of Es-AXIN in the WNT/ß-CATENIN pathway to exclude the effect of the WNT/ß-CATENIN pathway on the cytoskeleton. In conclusion, Es-ß-CATENIN participates in maintaining the hemolymph-testes barrier in the spermatogenesis of E. sinensis.


Assuntos
Braquiúros , Testículo , Animais , Masculino , Testículo/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , alfa Catenina/metabolismo , Braquiúros/metabolismo , Hemolinfa/metabolismo , Sêmen/metabolismo , Espermatogênese , Citoesqueleto/metabolismo , Junções Intercelulares/metabolismo , Mamíferos/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(19): e2212118120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126683

RESUMO

The prognosis and treatment outcomes of heart failure (HF) patients rely heavily on disease etiology, yet the majority of underlying signaling mechanisms are complex and not fully elucidated. Phosphorylation is a major point of protein regulation with rapid and profound effects on the function and activity of protein networks. Currently, there is a lack of comprehensive proteomic and phosphoproteomic studies examining cardiac tissue from HF patients with either dilated dilated cardiomyopathy (DCM) or ischemic cardiomyopathy (ICM). Here, we used a combined proteomic and phosphoproteomic approach to identify and quantify more than 5,000 total proteins with greater than 13,000 corresponding phosphorylation sites across explanted left ventricle (LV) tissue samples, including HF patients with DCM vs. nonfailing controls (NFC), and left ventricular infarct vs. noninfarct, and periinfarct vs. noninfarct regions of HF patients with ICM. Each pair-wise comparison revealed unique global proteomic and phosphoproteomic profiles with both shared and etiology-specific perturbations. With this approach, we identified a DCM-associated hyperphosphorylation cluster in the cardiomyocyte intercalated disc (ICD) protein, αT-catenin (CTNNA3). We demonstrate using both ex vivo isolated cardiomyocytes and in vivo using an AAV9-mediated overexpression mouse model, that CTNNA3 phosphorylation at these residues plays a key role in maintaining protein localization at the cardiomyocyte ICD to regulate conductance and cell-cell adhesion. Collectively, this integrative proteomic/phosphoproteomic approach identifies region- and etiology-associated signaling pathways in human HF and describes a role for CTNNA3 phosphorylation in the pathophysiology of DCM.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Animais , Camundongos , Humanos , Cardiomiopatia Dilatada/metabolismo , Ventrículos do Coração/metabolismo , Fosforilação , Proteômica , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , alfa Catenina/metabolismo
9.
Cells ; 12(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899839

RESUMO

Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell-cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin-catenin adhesion complex is a key contributor to inner blood-retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCµ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCµ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCµ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity.


Assuntos
Células Endoteliais , Interleucina-33 , Animais , Humanos , Camundongos , alfa Catenina/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Interleucina-33/metabolismo , Isquemia/metabolismo , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação
10.
Commun Biol ; 6(1): 276, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928388

RESUMO

Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds ß-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single ß-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.


Assuntos
Citoesqueleto de Actina , Junções Intercelulares , alfa Catenina , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , alfa Catenina/química , alfa Catenina/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Junções Intercelulares/metabolismo
11.
J Mol Biol ; 435(5): 167969, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682678

RESUMO

Classical cadherins are transmembrane proteins whose extracellular domains link neighboring cells, and whose intracellular domains connect to the actin cytoskeleton via ß-catenin and α-catenin. The cadherin-catenin complex transmits forces that drive tissue morphogenesis and wound healing. In addition, tension-dependent changes in αE-catenin conformation enables it to recruit the actin-binding protein vinculin to cell-cell junctions, which contributes to junctional strengthening. How and whether multiple cadherin-complexes cooperate to reinforce cell-cell junctions in response to load remains poorly understood. Here, we used single-molecule optical trap measurements to examine how multiple cadherin-catenin complexes interact with F-actin under load, and how this interaction is influenced by the presence of vinculin. We show that force oriented toward the (-) end of the actin filament results in mean lifetimes 3-fold longer than when force was applied towards the barbed (+) end. We also measured force-dependent actin binding by a quaternary complex comprising the cadherin-catenin complex and the vinculin head region, which cannot itself bind actin. Binding lifetimes of this quaternary complex increased as additional complexes bound F-actin, but only when load was oriented toward the (-) end. In contrast, the cadherin-catenin complex alone did not show this form of cooperativity. These findings reveal multi-level, force-dependent regulation that enhances the strength of the association of multiple cadherin/catenin complexes with F-actin, conferring positive feedback that may strengthen the junction and polarize F-actin to facilitate the emergence of higher-order cytoskeletal organization.


Assuntos
Citoesqueleto de Actina , Actinas , Vinculina , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , alfa Catenina/química , alfa Catenina/metabolismo , Caderinas/química , Caderinas/metabolismo , Adesão Celular , Ligação Proteica , Vinculina/química , Regulação Alostérica
12.
J Biol Chem ; 299(2): 102817, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539037

RESUMO

The regulation of cell-cell junctions during epidermal morphogenesis ensures tissue integrity, a process regulated by α-catenin. This cytoskeletal protein connects the cadherin complex to filamentous actin at cell-cell junctions. The cadherin-catenin complex plays key roles in cell physiology, organism development, and disease. While mutagenesis of Caenorhabditis elegans cadherin and catenin shows that these proteins are key for embryonic morphogenesis, we know surprisingly little about their structure and attachment to the cytoskeleton. In contrast to mammalian α-catenin that functions as a dimer or monomer, the α-catenin ortholog from C. elegans, HMP1 for humpback, is a monomer. Our cryogenic electron microscopy (cryoEM) structure of HMP1/α-catenin reveals that the amino- and carboxy-terminal domains of HMP1/α-catenin are disordered and not in contact with the remaining HMP1/α-catenin middle domain. Since the carboxy-terminal HMP1/α-catenin domain is the F-actin-binding domain (FABD), this interdomain constellation suggests that HMP1/α-catenin is constitutively active, which we confirm biochemically. Our perhaps most surprising finding, given the high sequence similarity between the mammalian and nematode proteins, is our cryoEM structure of HMP1/α-catenin bound to F-actin. Unlike the structure of mammalian α-catenin bound to F-actin, binding to F-actin seems to allosterically convert a loop region of the HMP1/α-catenin FABD to extend an HMP1/α-catenin FABD α-helix. We use cryoEM and bundling assays to show for the first time how the FABD of HMP1/α-catenin bundles actin in the absence of force. Collectively, our data advance our understanding of α-catenin regulation of cell-cell contacts and additionally aid our understanding of the evolution of multicellularity in metazoans.


Assuntos
Citoesqueleto de Actina , Caenorhabditis elegans , alfa Catenina , Animais , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , alfa Catenina/química , alfa Catenina/metabolismo , Caderinas/metabolismo , Mamíferos , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Microscopia Crioeletrônica , Adesão Celular , Comunicação Celular
13.
Life Sci ; 313: 121304, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535402

RESUMO

AIMS: Adhesion molecules play vital roles in the induction of airway hyperresponsiveness (AHR) or airway inflammation. The down-regulation of catenin alpha-like 1 (CTNNAL1) in the bronchial epithelial cells of asthma patients and mice models has been noted in our previous study. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. MAIN METHODS: We constructed a house dust mite (HDM)-induced asthma animal model on control mice and applied CTNNAL1-siRNA transfection to create CTNNAL1-deficient mice. KEY FINDINGS: We documented much more severe airway inflammation and increased leukocyte infiltration in the lungs of the CTNNAL1-deficient mice comparing to control mice, along with elevated expression of inflammatory cytokines. Dexamethasone (DEX) treatment led to less reduced inflammation in CTNNAL1-deficient mice compared with control mice. Immunoprecipitation confirmed the interaction between heat shock protein90 (hsp90) and CTNNAL1. The expression of hsp90 was upregulated after CTNNAL1 silencing. Meanwhile, the use of hsp90 inhibitor geldanamycin significantly decreased the expression of NR3C1, ICAM-1 and the ratio of p-p65/p65 in CTNNAL1-silenced 16HBE14o- cells. Both geldanamycin and DEX could function to suppress the expression of ICAM-1 and the phosphorylation level of p65. Nevertheless, the anti-inflammatory effect of DEX proved less potent than geldanamycin in the CTNNAL1-silenced group. The combined therapy of geldanamycin and DEX significantly decreased the inflammatory responses in CTNNAL1-deficient HBE cells than DEX monotherapy. SIGNIFICANCE: Our study corroborates that CTNNAL1 deficiency induced aggravated airway inflammation and rendered insensitivity to glucocorticoids via triggering hsp90 signaling pathway.


Assuntos
Asma , Glucocorticoides , Resposta ao Choque Térmico , alfa Catenina , Animais , Camundongos , alfa Catenina/genética , alfa Catenina/metabolismo , Asma/metabolismo , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Resposta ao Choque Térmico/genética , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/metabolismo , Pyroglyphidae/imunologia , Transdução de Sinais
14.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520419

RESUMO

α-Catenin couples the cadherin-catenin complex to the actin cytoskeleton. The mechanosensitive α-Catenin M region undergoes conformational changes upon application of force to recruit interaction partners. Here, we took advantage of the tension landscape in the Drosophila embryo to define three different states of α-Catenin mechanosensing in support of cell adhesion. Low-, medium-, and high-tension contacts showed a corresponding recruitment of Vinculin and Ajuba, which was dependent on the α-Catenin M region. In contrast, the Afadin homolog Canoe acts in parallel to α-Catenin at bicellular low- and medium-tension junctions but requires an interaction with α-Catenin for its tension-sensitive enrichment at high-tension tricellular junctions. Individual M region domains make complex contributions to cell adhesion through their impact on interaction partner recruitment, and redundancies with the function of Canoe. Our data argue that α-Catenin and its interaction partners are part of a cooperative and partially redundant mechanoresponsive network that supports AJs remodeling during morphogenesis.


Assuntos
Adesão Celular , Proteínas de Drosophila , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Morfogênese , Vinculina/genética , Vinculina/metabolismo , Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
15.
Biophys J ; 122(23): 4518-4527, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350000

RESUMO

Transmission of cell-generated (i.e., endogenous) tension at cell-cell contacts is crucial for tissue shape changes during morphogenesis and adult tissue repair in tissues such as epithelia. E-cadherin-based adhesions at cell-cell contacts are the primary means by which endogenous tension is transmitted between cells. The E-cadherin-ß-catenin-α-catenin complex mechanically couples to the actin cytoskeleton (and thereby the cell's contractile machinery) both directly and indirectly. However, the key adhesion constituents required for substantial endogenous force transmission at these adhesions in cell-cell contacts are unclear. Due to the role of α-catenin as a mechanotransducer that recruits vinculin at cell-cell contacts, we expected α-catenin to be essential for sustaining normal levels of force transmission. Instead, using the traction force imbalance method to determine the inter-cellular force at a single cell-cell contact between cell pairs, we found that it is vinculin that is essential for sustaining normal levels of endogenous force transmission, with absence of vinculin decreasing the inter-cellular tension by over 50%. Our results constrain the potential mechanical pathways of force transmission at cell-cell contacts and suggest that vinculin can transmit forces at E-cadherin adhesions independent of α-catenin, possibly through ß-catenin. Furthermore, we tested the ability of lateral cell-cell contacts to withstand external stretch and found that both vinculin and α-catenin are essential to maintain cell-cell contact stability under external forces.


Assuntos
Caderinas , beta Catenina , alfa Catenina/metabolismo , Vinculina/metabolismo , Caderinas/metabolismo , Adesão Celular , Actinas/metabolismo
16.
Biol Open ; 11(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36420826

RESUMO

The adherens junction component, alpha-T-catenin (αTcat) is an established contributor to cardiomyocyte junction structure and function, but recent genomic studies link CTNNA3 polymorphisms to diseases with no clear cardiac underpinning, including asthma, autism and multiple sclerosis, suggesting causal contributions from a different cell-type. We show Ctnna3 mRNA is highly expressed in peripheral nerves (e.g. vagus and sciatic), where αTcat protein enriches at paranodes and myelin incisure adherens junctions of Schwann cells. We validate αTcat immunodetection specificity using a new Ctnna3-knock-out fluorescence reporter mouse line yet find no obvious Schwann cell loss-of-function morphology at the light microscopic level. CTNNA3/Ctnna3 mRNA is also abundantly detected in oligodendrocytes of the central nervous system via public databases, supporting a general role for αTcat in these unique cell-cell junctions. These data suggest that the wide range of diseases linked to CTNNA3 may be through its role in maintaining neuroglial functions of central and peripheral nervous systems. This article has a corresponding First Person interview with the co-first authors of the paper.


Assuntos
Junções Aderentes , Células de Schwann , Camundongos , Animais , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Células de Schwann/metabolismo , Nervos Periféricos , Cateninas/metabolismo , RNA Mensageiro , alfa Catenina/genética , alfa Catenina/metabolismo
17.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233261

RESUMO

α-catulin, together with vinculin and the α-catenins, belongs to the vinculin family of proteins, best known for their actin-filament binding properties and crucial roles in cell-cell and cell-substrate adhesion. In the past few years, an array of binding partners for α-catulin have surfaced, which has shed new light on the possible functions of this protein. Despite all this information, the molecular basis of how α-catulin acts in cells and controls a wide variety of signals during morphogenesis, tissue homeostasis, and cancer progression remains elusive. This review aims to highlight recent discoveries on how α-catulin is involved in a broad range of diverse biological processes with an emphasis on cancer progression.


Assuntos
Cateninas , Neoplasias , Actinas , Família , Homeostase , Humanos , Vinculina , alfa Catenina/metabolismo
18.
Elife ; 112022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269226

RESUMO

Mechanisms communicating changes in tissue stiffness and size are particularly relevant in the intestine because it is subject to constant mechanical stresses caused by peristalsis of its variable content. Using the Drosophila intestinal epithelium, we investigate the role of vinculin, one of the best characterised mechanoeffectors, which functions in both cadherin and integrin adhesion complexes. We discovered that vinculin regulates cell fate decisions, by preventing precocious activation and differentiation of intestinal progenitors into absorptive cells. It achieves this in concert with α-catenin at sites of cadherin adhesion, rather than as part of integrin function. Following asymmetric division of the stem cell into a stem cell and an enteroblast (EB), the two cells initially remain connected by adherens junctions, where vinculin is required, only on the EB side, to maintain the EB in a quiescent state and inhibit further divisions of the stem cell. By manipulating cell tension, we show that vinculin recruitment to adherens junction regulates EB activation and numbers. Consequently, removing vinculin results in an enlarged gut with improved resistance to starvation. Thus, mechanical regulation at the contact between stem cells and their progeny is used to control tissue cell number.


Mechanical changes in the environment have recently emerged as important signals of cell division and production of specialised cell types. Exactly how these forces are sensed and contribute to this process in living tissues, however, remains unclear. This question is particularly relevant in the lining of the gut. Endlessly exposed to intense mechanical stress and the passage of food, this tissue must constantly heal and renew itself. The intestinal cells that absorb nutrients from food, for example, are continually replaced as older cells are lost. This is made possible by immature 'progenitor' cells in the intestine dividing and maturing into various specialised cells ­ including fully functional absorptive cells ­ upon receiving the right mechanical and chemical signals. Errors in this carefully regulated process can result in too many or too few cells of the correct kind being produced, potentially leading to disease. To explore how mechanical forces may help to control the renewal and maturation of new intestinal cells, Bohère et al. examined the role of vinculin in the guts of fruit flies (where cell fate decisions involve mechanisms largely similar to humans). Vinculin can regulate cell fate, sense mechanical forces, and interact with the complex structures that physically connect cells to each other. Genetically altered flies that lacked vinculin had enlarged guts containing many more absorptive cells than those of normal flies, suggesting that the vinculin protein prevents over-production of these cells. Further experiments revealed that vinculin worked exclusively in the precursors of absorptive cells, keeping them in an immature state until new mature absorptive cells were required. This was achieved by vinculin acting upon ­ and potentially strengthening ­ the junctions connecting cells together. Finally, increasing the force within cells was shown to facilitate vinculin recruitment to these junctions. This study clarifies the role that mechanical forces at the interface between cells play in controlling when and how intestinal progenitors mature in an organism. If these findings are confirmed in mammals, Bohère et al. hope that they could inform how tissues cope with the changing mechanical landscape associated with ageing and inflammation.


Assuntos
Drosophila , Enterócitos , Animais , alfa Catenina/metabolismo , Vinculina/metabolismo , Drosophila/metabolismo , Enterócitos/metabolismo , Actinas/metabolismo , Caderinas/metabolismo , Integrinas , Homeostase
19.
Development ; 149(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36125129

RESUMO

The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caderinas/genética , Caderinas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Morfogênese/genética , alfa Catenina/genética , alfa Catenina/metabolismo
20.
PLoS One ; 17(8): e0269208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969522

RESUMO

The Ajuba LIM protein Jub mediates regulation of Hippo signaling by cytoskeletal tension through interaction with the kinase Warts and participates in feedback regulation of junctional tension through regulation of the cytohesin Steppke. To investigate how Jub interacts with and regulates its distinct partners, we investigated the ability of Jub proteins missing different combinations of its three LIM domains to rescue jub phenotypes and to interact with α-catenin, Warts and Steppke. Multiple regions of Jub contribute to its ability to bind α-catenin and to localize to adherens junctions in Drosophila wing imaginal discs. Co-immunoprecipitation experiments in cultured cells identified a specific requirement for LIM2 for binding to Warts. However, in vivo, both LIM1 and LIM2, but not LIM3, were required for regulation of wing growth, Yorkie activity, and Warts localization. Conversely, LIM2 and LIM3, but not LIM1, were required for regulation of cell shape and Steppke localization in vivo, and for maximal Steppke binding in co-immunoprecipitation experiments. These observations identify distinct functions for the different LIM domains of Jub.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Proteínas com Domínio LIM/fisiologia , Animais , Citoesqueleto/química , Citoesqueleto/fisiologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas com Domínio LIM/análise , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM/análise , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , alfa Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA