Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Plant Cell ; 36(4): 1098-1118, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38092516

RESUMO

DNA methylation is an important epigenetic mark implicated in selective rRNA gene expression, but the DNA methylation readers and effectors remain largely unknown. Here, we report a protein complex that reads DNA methylation to regulate variant-specific 45S ribosomal RNA (rRNA) gene expression in Arabidopsis (Arabidopsis thaliana). The complex, consisting of METHYL-CpG-BINDING DOMAIN PROTEIN5 (MBD5), MBD6, ALPHA-CRYSTALLIN DOMAIN PROTEIN15.5 (ACD15.5), and ACD21.4, directly binds to 45S rDNA. While MBD5 and MBD6 function redundantly, ACD15.5 and ACD21.4 are indispensable for variant-specific rRNA gene expression. These 4 proteins undergo phase separation in vitro and in vivo and are interdependent for their phase separation. The α-crystallin domain of ACD15.5 and ACD21.4, which is essential for their function, enables phase separation of the complex, likely by mediating multivalent protein interactions. The effector MICRORCHIDIA6 directly interacts with ACD15.5 and ACD21.4, but not with MBD5 and MBD6, and is recruited to 45S rDNA by the MBD-ACD complex to regulate variant-specific 45S rRNA expression. Our study reveals a pathway in Arabidopsis through which certain 45S rRNA gene variants are silenced, while others are activated.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , alfa-Cristalinas , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de RNAr , Metilação de DNA/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo
2.
Exp Eye Res ; 227: 109358, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572168

RESUMO

The α-crystallin small heat shock proteins contribute to the transparency and refractive properties of the vertebrate eye lens and prevent the protein aggregation that would otherwise produce lens cataracts, the leading cause of human blindness. There are conflicting data in the literature as to what role the α-crystallins may play in early lens development. In this study, we used CRISPR gene editing to produce zebrafish lines with mutations in each of the three α-crystallin genes (cryaa, cryaba and cryabb) to prevent protein production. The absence of each α-crystallin protein was analyzed by mass spectrometry, and lens phenotypes were assessed with differential interference contrast microscopy and histology. Loss of αA-crystallin produced a variety of lens defects with varying severity in larvae at 3 and 4 dpf but little substantial change in normal fiber cell denucleation. Loss of αBa-crystallin produced no substantial lens defects. Our cryabb mutant produced a truncated αBb-crystallin protein and showed no substantial change in lens development. Mutation of each α-crystallin gene did not alter the mRNA levels of the remaining two, suggesting a lack of genetic compensation. These data suggest that αA-crystallin plays some role in lens development, but the range of phenotype severity in null mutants indicates its loss simply increases the chance for defects and that the protein is not essential. Our finding that cryaba and cryabb mutants lack noticeable lens defects is congruent with insubstantial transcript levels for these genes in lens epithelial and fiber cells through five days of development. Future experiments can explore the molecular mechanisms leading to lens defects in cryaa null mutants and the impact of αA-crystallin loss during zebrafish lens aging.


Assuntos
Catarata , Cristalinas , Cristalino , Cadeia A de alfa-Cristalina , alfa-Cristalinas , Animais , Humanos , Peixe-Zebra , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Cadeia A de alfa-Cristalina/metabolismo , Cristalino/metabolismo , Proteínas/metabolismo , Catarata/metabolismo
3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203641

RESUMO

Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.


Assuntos
Proteínas de Choque Térmico Pequenas , alfa-Cristalinas , Humanos , alfa-Cristalinas/genética , Bioensaio , Chaperonas Moleculares/genética , Dobramento de Proteína
4.
Mol Vis ; 28: 317-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338667

RESUMO

Purpose: To clarify the effect of a previously identified single nucleotide polymorphism (SNP; rs76740365 G>A) in the exon-3 of the alpha A-crystallin (CRYAA) gene on the properties of CRYAA and to investigate its function in human lens epithelial cells (HLECs). Methods: The human recombinant wild-type and mutant CRYAA (E156K) were constructed, and the molecular weight was measured by mass spectrometry. The structural changes induced by E156K mutation were analyzed by UV circular dichroism spectra and intrinsic tryptophan fluorescence and were predicted using Schrödinger software. The chaperone-like ability of wild-type and E156K mutant CRYAA was invested against the heat-induced aggregation of ßL-crystallin and the DTT-induced aggregation of insulin. HLECs expressing wild-type and mutated CRYAA were subjected to quantitative PCR (qPCR) and western blot. Cell apoptosis was determined using flow cytometry analysis, and the expression of apoptosis-related proteins were determined using western blot. Results: The mass spectrometric detection revealed that E156K mutation had no significant effect on the apparent molecular mass of the CRYAA oligomeric complex. Evaluation of the structures of the CRYAA indicated that E156K mutation did not significantly affect the secondary structures, while causing perturbations of the tertiary structure. The mutant CRYAA displayed an increase in chaperone-like activity, which might be related to the increase of the surface hydrophobicity. We also predicted that E156K mutation would induce a change from negatively charged surface to positively charged, which was the possible reason for the disturbance to the surface hydrophobicity. Transfection studies of HLECs revealed that the E156K mutant induced anti-apoptotic function in HLECs, which was possibly associated with the activation of the p-AKT signal pathway and downregulation of Casepase3. Conclusions: Taken together, our results for the first time showed that E156K mutation in CRYAA associated with ARC resulted in enhanced chaperone-like function by inducing its surface hydrophobicity, which was directly related to the activation of its anti-apoptotic function.


Assuntos
Cristalinas , Cadeia A de alfa-Cristalina , alfa-Cristalinas , Humanos , Cristalinas/genética , Cadeia A de alfa-Cristalina/química , alfa-Cristalinas/genética , Polimorfismo de Nucleotídeo Único , Éxons/genética , Células Epiteliais/metabolismo , Chaperonas Moleculares/genética
5.
Cell Stress Chaperones ; 27(4): 309-323, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35678958

RESUMO

Small heat shock proteins (sHSPs) emerged early in evolution and occur in all domains of life and nearly in all species, including humans. Mutations in four sHSPs (HspB1, HspB3, HspB5, HspB8) are associated with neuromuscular disorders. The aim of this study is to investigate the evolutionary forces shaping these sHSPs during vertebrate evolution. We performed comparative evolutionary analyses on a set of orthologous sHSP sequences, based on the ratio of non-synonymous: synonymous substitution rates for each codon. We found that these sHSPs had been historically exposed to different degrees of purifying selection, decreasing in this order: HspB8 > HspB1, HspB5 > HspB3. Within each sHSP, regions with different degrees of purifying selection can be discerned, resulting in characteristic selective pressure profiles. The conserved α-crystallin domains were exposed to the most stringent purifying selection compared to the flanking regions, supporting a 'dimorphic pattern' of evolution. Thus, during vertebrate evolution the different sequence partitions were exposed to different and measurable degrees of selective pressures. Among the disease-associated mutations, most are missense mutations primarily in HspB1 and to a lesser extent in the other sHSPs. Our data provide an explanation for this disparate incidence. Contrary to the expectation, most missense mutations cause dominant disease phenotypes. Theoretical considerations support a connection between the historic exposure of these sHSP genes to a high degree of purifying selection and the unusual prevalence of genetic dominance of the associated disease phenotypes. Our study puts the genetics of inheritable sHSP-borne diseases into the context of vertebrate evolution.


Assuntos
Proteínas de Choque Térmico , Chaperonas Moleculares , alfa-Cristalinas , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico Pequenas/genética , Humanos , Chaperonas Moleculares/genética , Mutação , Vertebrados/genética , Cadeia B de alfa-Cristalina , alfa-Cristalinas/genética
6.
Biochemistry (Mosc) ; 87(3): 225-241, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35526854

RESUMO

* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.


Assuntos
Catarata , Cristalino , alfa-Cristalinas , Catarata/genética , Humanos , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Agregados Proteicos , alfa-Cristalinas/química , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo
7.
Exp Eye Res ; 206: 108535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705730

RESUMO

The vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ's rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos and larvae at single cell resolution through five days of development, identifying a number of novel putative regulators of lens development. Our data address open questions about the temperospatial expression of α-crystallins during lens development that will support future studies of their function and provide the first detailed view of ß- and γ-crystallin expression in and outside the lens. We describe divergent expression in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, membrane associated, RNA-binding, and transcription factor genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.


Assuntos
Células Epiteliais/metabolismo , Cristalino/metabolismo , Transcriptoma/genética , alfa-Cristalinas/genética , gama-Cristalinas/genética , Animais , Células Epiteliais/citologia , Cristalino/crescimento & desenvolvimento , Peixe-Zebra , alfa-Cristalinas/metabolismo , gama-Cristalinas/metabolismo
8.
Cell Stress Chaperones ; 26(3): 527-539, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609257

RESUMO

Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Temperatura Alta , Spodoptera/metabolismo , Animais , Perfilação da Expressão Gênica/métodos , Temperatura Alta/efeitos adversos , Proteínas de Insetos/genética , Larva/metabolismo , Transcriptoma/genética , alfa-Cristalinas/genética
9.
Int J Biol Macromol ; 163: 2374-2391, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961180

RESUMO

Cataract, the major cause of blindness worldwide occurs due to the misfolding and aggregation of the protein crystallin, which constitute a major portion of the lens protein. Other than the whole protein crystallin, the peptide sequences generated from crystallin as a result of covalent protein damage have also been shown to possess and foster protein aggregation, which can be established as crystallin aggregation models. Thus, the disaggregation or inhibition of these protein aggregates could be a viable approach to combat cataract and preserve lens proteostasis. Herein, we tried to explore the disruption as well as inhibition of the intact α-crystallin protein and α-crystallin derived model peptide aggregates by l-3,4-dihydroxyphenylalanine (levodopa) coated gold (Au) nano/micro-roses as modulators. Thioflavin T fluorescence enhancement assay, and electron microscopic analysis were being employed to probe the anti-aggregation behavior of the Au nano/micro-roses towards the aggregating α-crystallin peptides/protein. Further, computational studies were performed to reveal the nature of molecular interactions between the levodopa molecule and the α-crystallin derived model peptides. Interestingly, both levodopa coated Au nano/micro-roses were found to be capable of inhibiting as well as preventing the aggregation of the intact α-crystallin protein and other model peptides derived from it.


Assuntos
Anisotropia , Nanopartículas Metálicas/química , Peptídeos/química , alfa-Cristalinas/química , Ouro/química , Levodopa/farmacologia , Peptídeos/antagonistas & inibidores , Agregação Patológica de Proteínas/genética , alfa-Cristalinas/genética
10.
PLoS One ; 15(8): e0238081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833997

RESUMO

Cataracts are a major cause of blindness worldwide and commonly occur in individuals over 70 years old. Cataracts can also appear earlier in life due to genetic mutations. The lens proteins, αA- and αB-crystallins, are chaperone proteins that have important roles maintaining protein solubility to prevent cataract formation. Mutations in the CRYAA and CRYAB crystallin genes are associated with autosomal dominant early onset human cataracts. Although studies about the proteomic and genomic changes that occur in cataracts have been reported, metabolomics studies are very limited. Here, we directly investigated cataract metabolism using gas-chromatography-mass spectrometry (GC-MS) to analyze the metabolites in adult Cryaa-R49C and Cryab-R120G knock-in mouse lenses. The most abundant metabolites were myo-inositol, L-(+)-lactic acid, cholesterol, phosphate, glycerol phosphate, palmitic and 9-octadecenoic acids, α-D-mannopyranose, and ß-D-glucopyranose. Cryaa-R49C knock-in mouse lenses had a significant decrease in the number of sugars and minor sterols, which occurred in concert with an increase in lactic acid. Cholesterol composition was unchanged. In contrast, Cryab-R120G knock-in lenses exhibited increased total amino acid content including valine, alanine, serine, leucine, isoleucine, glycine, and aspartic acid. Minor sterols, including cholest-7-en-3-ol and glycerol phosphate were decreased. These studies indicate that lenses from Cryaa-R49C and Cryab-R120G knock-in mice, which are models for human cataracts, have unique amino acid and metabolite profiles.


Assuntos
Catarata/genética , Catarata/metabolismo , Cristalino/metabolismo , Mutação , alfa-Cristalinas/genética , Animais , Modelos Animais de Doenças , Humanos , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL
11.
Dev Comp Immunol ; 111: 103755, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526290

RESUMO

Small heat shock proteins are a molecular chaperone and implicated in various physiological and stress processes in animals. However, the immunological functions of Hsp genes remain to elucidate in the crustaceans, particularly in red swamp crayfish, Procambarus clarkii. Here we report the cloning of heat shock protein 21 from the P. clarkii (hereafter Pc-Hsp21). The open reading frame of Pc-Hsp21 was 555 base pairs, encoding a protein of 184 amino acid residues with an alpha-crystallin family domain. Quantitative real-time PCR (qRT-PCR) analysis revealed a constitutive transcript expression of Pc-Hsp21 in the tested tissue, with the highest in hepatopancreas. The transcript abundance for this gene enhanced in hepatopancreas following immune challenge with the lipopolysaccharide, peptidoglycan, and poly I:C compared to the control group. The depletion of Pc-Hsp21 by double-stranded RNA altered transcript expression profiles of several genes in hepatopancreas, genes involved in the crucial immunological pathways of P. clarkii. These results suggest that Pc-Hsp21 plays an essential biological role in the microbial stress response by modulating the expression of immune-related genes in P. clarkii.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/genética , Proteínas de Choque Térmico/genética , Hepatopâncreas/fisiologia , alfa-Cristalinas/genética , Animais , Proteínas de Artrópodes/metabolismo , Astacoidea/imunologia , Células Cultivadas , Clonagem Molecular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/metabolismo , Imunidade/genética , Lipopolissacarídeos/imunologia , Especificidade de Órgãos , Peptidoglicano/imunologia , Filogenia , Poli I-C/imunologia , Transcriptoma
12.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235464

RESUMO

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Assuntos
Terapia com Luz de Baixa Intensidade , Neuroproteção/efeitos da radiação , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Degeneração Retiniana/terapia , Animais , Feminino , Raios Infravermelhos/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Regulação para Cima/efeitos da radiação , alfa-Cristalinas/genética
13.
Dev Comp Immunol ; 106: 103638, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017956

RESUMO

Small heat shock proteins (shsps) are conserved across invertebrate species. They are implicated in the modulation of various biological processes, such as immune responses, abiotic stress tolerance metamorphosis, and embryonic development. Herein, we identified a heat shock protein 20 from the red swamp crayfish, Procambarus clarkii (named as Pc-Hsp20), and performed in vivo studies to elucidate its physiological functions in the innate immunity. The open reading frame of Pc-Hsp20 was 609 base pair, encoding a protein of 202 amino acid residues with a hsp20/alpha crystallin family domain. Pc-Hsp20 was ubiquitously expressed in various tissues; however, it was highest in the hepatopancreas. The challenge with immune elicitors remarkably enhanced the transcript level of Pc-Hsp20 in the hepatopancreas when compared with the control. Administration of double-stranded RNA could significantly reduce expression of the Pc-Hsp20 mRNAs, and most of the immune-related genes expression enhanced with a variable concentration in the hepatopancreas. Altogether, these results suggest that Pc-Hsp20 may participate in innate immunity against microbial pathogens.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/imunologia , Proteínas de Choque Térmico HSP20/genética , Hepatopâncreas/fisiologia , Infecções/imunologia , Animais , Proteínas de Artrópodes/metabolismo , Clonagem Molecular , Proteínas de Choque Térmico HSP20/metabolismo , Imunidade Inata , Filogenia , Domínios Proteicos/genética , RNA de Cadeia Dupla/imunologia , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma , alfa-Cristalinas/genética
14.
Biochem Biophys Res Commun ; 521(1): 220-226, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630804

RESUMO

Distal hereditary motor neuropathies (dHMN) are a group of inherited peripheral nerve disorders characterized by length-dependent motor neuron weakness and subsequent muscle atrophy. Missense mutations in the gene encoding small heat shock protein HSPB1 (HSP27) have been associated with hereditary neuropathies including dHMN. HSPB1 is a member of the small heat shock protein (sHSP) family characterized by a highly conserved α-crystallin domain that is critical to their chaperone activity. In this study, we modeled HSPB1 mutant-induced neuropathies in Drosophila using a human HSPB1S135F mutant that has a missense mutation in its α-crystallin domain. Overexpression of the HSPB1 mutant produced no significant defect in the Drosophila development, however, a partial reduction in the life span was observed. Further, the HSPB1 mutant gene induced an obvious loss of motor activity when expressed in Drosophila neurons. Moreover, suppression of histone deacetylase 6 (HDAC6) expression, which has critical roles in HSPB1 mutant-induced axonal defects, successfully rescued the motor defects in the HSPB1 mutant Drosophila model.


Assuntos
Drosophila melanogaster/genética , Proteínas de Choque Térmico/genética , Neuropatia Hereditária Motora e Sensorial/genética , Chaperonas Moleculares/genética , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico/metabolismo , Neuropatia Hereditária Motora e Sensorial/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Atividade Motora/genética , Mutação , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo
15.
Mol Vis ; 25: 118-128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820147

RESUMO

Purpose: As the aging population is increasing, the incidence of age-related cataract is expected to increase globally. The surgical intervention, a treatment for cataract, still has complications and is limited to developed countries. In this study, we investigated whether the polyphenol-enriched fraction of Vaccinium uliginosum L. (FH) prevents cataract formation in Sprague-Dawley (SD) rat pups. Methods: Sixty rat pups were randomly divided into six groups: CTL, Se, FH40, FH80, FH120, and Cur80. The cataract was induced with subcutaneous injection of sodium selenite (18 µmol/kg bodyweight) on postnatal (P) day 10. All groups, except CTL, were injected with sodium selenite, and the FH40, FH80, and FH120 groups were given gastric intubation with FH40 mg/kg, 80 mg/kg, and 120 mg/kg on P9, P10, and P11. The Cur80 group was also given gastric intubation with curcumin 80 mg/kg on P9, P10, and P11. All rat pups were euthanized on P30. Results: Lens morphological analysis showed that FH dose-dependently inhibited cataract formation. In the Se group, soluble proteins were insolubilized, and the gene expression of the α-, ß-, and γ-crystallins was downregulated. However, FH treatment statistically significantly inhibited insolubilization of soluble proteins and downregulation of the gene expression of the α-, ß-, and γ-crystallins. In the Se group, the gene and protein levels of m-calpain were downregulated, which were attenuated with FH treatment. In addition, sodium selenite injection caused reduced antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GPx)), glutathione (GSH) depletion, and malondialdehyde (MDA) production in the lens. The administration of FH inhibited sodium selenite-induced oxidative stress in a dose-dependent manner. The mechanism of protection against oxidative stress by FH involves NF-E2-related factor (Nrf-2) and hemoxygenase-1 (HO-1). FH treatment inhibited decrease of Nrf-2 in the nucleus fraction and HO-1 in the cytosol fraction. Finally, the FH treatment protected poly (ADP)-ribose polymerase (PARP) from cleavage, determined with western blotting. Conclusions: FH showed a preventive effect against cataract formation by inhibiting m-calpain-mediated proteolysis and oxidative stress in the lens. These results suggest that FH could be a potential anticataract agent in age-related cataract.


Assuntos
Antioxidantes/farmacologia , Mirtilos Azuis (Planta)/química , Catarata/prevenção & controle , Proteínas do Olho/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Animais Recém-Nascidos , Antioxidantes/isolamento & purificação , Calpaína/genética , Calpaína/metabolismo , Catarata/induzido quimicamente , Catarata/genética , Catarata/patologia , Proteínas do Olho/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Cristalino/patologia , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Polifenóis/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Selenito de Sódio/administração & dosagem , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , beta-Cristalinas/genética , beta-Cristalinas/metabolismo , gama-Cristalinas/genética , gama-Cristalinas/metabolismo
16.
Exp Eye Res ; 182: 1-9, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849386

RESUMO

Acetylation of lysine residues occurs in lens proteins. Previous studies have shown an improvement in the chaperone activity of αA-crystallin upon acetylation. Sirtuins are NAD+-dependent enzymes that can deacylate proteins. The roles of sirtuins in regulating the acetylation of lens proteins and their impacts on the function of α-crystallin are not known. Here, we detected sirtuin activity in mouse lenses, and SIRT3 and SIRT5 were present primarily in the mitochondria of cultured primary mouse lens epithelial cells. Western blotting showed higher levels of protein acetylation in the lenses of SIRT3 KO and SIRT5 KO mice than in lenses of WT mice. Mass spectrometry analyses revealed a greater number of acetylated lysine residues in α-crystallin isolated from the SIRT3 and SIRT5 KO lenses than from WT lenses. α-Crystallin isolated from SIRT3 and SIRT5 KO lenses displayed a higher surface hydrophobicity and higher chaperone activity than the protein isolated from WT lenses. Thus, SIRTs regulate the acetylation levels of crystallins in mouse lenses, and acetylation in lenses enhances the chaperone activity of α-crystallin.


Assuntos
Catarata/genética , Regulação da Expressão Gênica , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Sirtuína 3/genética , Sirtuínas/genética , alfa-Cristalinas/genética , Acetilação , Animais , Western Blotting , Catarata/metabolismo , Modelos Animais de Doenças , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/genética , Sirtuína 3/biossíntese , Sirtuínas/biossíntese , alfa-Cristalinas/metabolismo
17.
J Genet ; 97(4): 911-924, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30262703

RESUMO

Our previous study based on the transcriptome profiling indicated that a fragment of α-crystallin type heat shock protein (α-Hsp) gene was one of the numerous cDNA sequences expressed differentially at various stages of head regeneration in Hydra vulgaris. To further investigate the role that which α-Hsp plays during hydra regeneration, a full-length cDNA of α-Hsp gene of H. vulgaris was isolated by the rapid amplification of cDNA ends (RACE) technique. The full-length cDNA of α-Hsp gene was 1156 bp, containing a 765 bp open-reading frame (ORF), which encodes a polypeptide of 254 amino acid residues with a molecular weight of 29.27 kDa. Further, the ORF was subcloned into the plasmid pET-42a(+), and the recombinant plasmid pET-42a(+)-α- Hsp was transformed to Escherichia coli BL21(DE3), then the fusion protein GST-α-Hsp was expressed mainly in the form of a soluble molecule after induction by isopropyl-ß-d-thiogalactopyranoside. In addition, BALB/Cmice were immunized with the fusion protein to prepare the polyclonal antiserum which was used as the primary antibody for whole-mount immunohistochemical assay. The results from the immunohistochemical assay showed that α-Hsp had expressedmainly at the wound site and nearby area of hydra after decapitation operation, and both quantitative real-time polymerase chain reaction (qPCR) analysis and immunohistochemical assay revealed that the expression level of α-Hsp increased gradually during the early period of hydra regeneration, then reached a peak at 24 h after decapitation operation, while decreased during the late regeneration period. Moreover, it indicated an important role of α-Hsp gene in hydra head regeneration that RNA interference (RNAi)-mediated α-Hsp silencing led to the obvious delay of the regeneration of head structures in H. vulgaris. In conclusion, our results gave the hint that α-Hsp could be related to wound healing and tissue remodelling at early regeneration stages, and may lay the foundation for further studies about the physiological function and role of α-Hsp during hydra regeneration.


Assuntos
Cabeça/crescimento & desenvolvimento , Hydra/genética , Regeneração/genética , alfa-Cristalinas/genética , Sequência de Aminoácidos/genética , Animais , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Choque Térmico/genética , Hydra/crescimento & desenvolvimento
18.
Cell Physiol Biochem ; 49(1): 368-380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138912

RESUMO

Small heat shock proteins (sHSPs) are one of the five families of proteins acting as molecular chaperone. sHSPs possess a universally conserved alpha-crystallin domain, hence, also known as alpha-crystallin family. Mycobacterium tuberculosis (MTB) is an etiological agent of tuberculosis, a disease claiming million of lives every year across the world. MTB has two sHSPs: sHSP16.3 (a 16.3 kDa protein) and Acr2 (a 17.8 kDa protein). Of these, sHSP16.3 has been reported to be crucial for survival of MTB during prolonged period of dormancy, in addition to indispensable role in its growth, virulence and cell wall thickening. Additionally, this mycobacterial protein is also beneficial for host as well. Due to strong immunogenic properties and consistent presence in patients sera, sHSP16.3 has largely been implicated in vaccine development and diagnosis of latent and active infections of MTB in the clinical cases of TB. Recently, our study provided the substantial evidence to exploit this mycobacterial protein as a good drug target for developing novel therapeutic intervention. In the present review, a comprehensive analysis of various attributes of sHSP16.3 has been done and major gaps in area have been highlighted for future course of action.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Mycobacterium tuberculosis/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Choque Térmico Pequenas/genética , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/metabolismo , Tuberculose/microbiologia , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo
19.
Toxicology ; 394: 11-18, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196190

RESUMO

Cigarette smoking is a significant risk factor for cataract. However, the mechanism by which cigarette smoke (CS) causes cataract remains poorly understood. We had earlier shown that in CS-exposed guinea pig, p-benzoquinone (p-BQ) derived from CS in the lungs is carried by the circulatory system to distant organs and induces various smoke-related pathogeneses. Here, we observed that CS exposure caused accumulation of the p-BQ-protein adduct in the eye lens of guinea pigs. We also observed accumulation of the p-BQ-protein adduct in resected lens from human smokers with cataract. No such accumulation was observed in the lens of never smokers. p-BQ is a strong arylating agent that forms Michael adducts with serum albumin and haemoglobin resulting in alterations of structure and function. A major protein in the mammalian eye lens is αA-crystallin, which is a potent molecular chaperone. αA-crystallin plays a key role in maintaining the integrity and transparency of the lens. SDS-PAGE indicated that p-BQ induced aggregation of αA-crystallin. Various biophysical techniques including UV-vis spectroscopy, fluorescence spectroscopy, FT-IR, bis-ANS titration suggested a perturbation of structure and chaperone function of αA-crystallin upon p-BQ modification. Our results indicate that p-BQ is a causative agent involved in the modification of αA-crystallin and pathogenesis of CS-induced cataract. Our findings would educate public about the impacts of smoking on eye health and help to discourage them from smoking. The study might also help scientists to develop new drugs for the intervention of CS-induced cataract at an early stage.


Assuntos
Benzoquinonas/toxicidade , Catarata/etiologia , Catarata/metabolismo , Fumar Cigarros/efeitos adversos , alfa-Cristalinas/metabolismo , Idoso , Animais , Benzoquinonas/química , Benzoquinonas/farmacocinética , Benzoquinonas/intoxicação , Catarata/induzido quimicamente , Catarata/patologia , Fumar Cigarros/metabolismo , Fumar Cigarros/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Cobaias , Humanos , Cápsula do Cristalino/efeitos dos fármacos , Cápsula do Cristalino/metabolismo , Cápsula do Cristalino/patologia , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/metabolismo , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , alfa-Cristalinas/biossíntese , alfa-Cristalinas/química , alfa-Cristalinas/genética
20.
Protein Pept Lett ; 24(11): 1048-1058, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28782478

RESUMO

BACKGROUND: The chaperone activity of α-crystallin (α-Cry) plays an important role in maintenance of eye lens transparency. Various mutations in the α-Cry genes have been indicated to cause cataract diseases in human. Also, the calcium imbalance has been shown to induce aggregation in α-Cry. We investigated the impact of calcium ion on structure, chaperone activity of the recombinant wild-type and mutant R12C αA-Cry. We suggested that the raise of calcium level in eye lens is an additional contributory factor accelerating the development of cataract diseases in patients with R12C mutation. OBJECTIVES: The main objective of this study was to investigate the impact of calcium ion on structure, chaperone activity and amyloidogenic properties of the recombinant wild-type and mutant R12C αA-Cry, in a comparative study. METHODS: The mutagenesis was performed on confirmed αA-Cry cDNA in pET-28b (+) which applied as a template to generate R12C mutant, using polymerase chain reaction (PCR) and a Quick Change Lightning Multi Site-Directed Mutagenesis kit (Stratgene). Both wild-type and mutant plasmids were chemically transformed into E.coli BL21 (DE3) and the respective recombinant proteins over-expressed in LB broth. The protein purification was done using Q-Sepharose anion exchange and Sephacryl S-300 gel filtration chromatography. The purified αA-Cry samples were incubated with different concentrations of calcium ion (0-40 mM) at 37 °C for 1 week. The secondary and tertiary structural analyses of each protein were performed by far-UV CD and Try/Trp and ANS fluorescence assessments, respectively. The assessment of chaperone activity was done spectrophotometrically in both thermal and chemical-induced aggregation systems using γ-Cry and bovine pancreatic insulin as the substrate proteins, respectively. Also, the amyloidogenic properties of proteins was investigated by CR absorption and ThT fluorescence measurements. RESULTS: The results of fluorescence and CD assessments suggested the significant secondary and tertiary structural alterations upon R12C mutation. R12C mutant αA-Cry demonstrated preserved secondary and tertiary structures in the presence of calcium. The chaperone activity of wild-type and mutant R12C αA-Cry was reduced in the presence of calcium. Also, the extent of chaperone activity reduction was significantly higher for R12C αA-Cry. Both wild-type and mutant R12C αA-Cry revealed slight amount of aggregation when incubated with different calcium concentrations for 1 week, at 37 °C. However, the susceptibility of both proteins for aggregation was significantly increased in the presence of 40 mM calcium, at the elevated temperature (60 °C). Also, the mutant protein exhibited extensive disulfide bridge cross-linking as indicated by gel electrophoresis. Moreover, the mutant R12C αA-Cry significantly resists against amyloid fibril formation in the presence of calcium ion compared to the wild-type protein as indicated by CR and ThT assessments. CONCLUSION: Our data suggested that αA-Cry conformational changes occurring upon R12C mutation and further functional damages induced by calcium may play an important role in the pathomechanism of the cataract development by this mutant protein.


Assuntos
Cálcio/metabolismo , Catarata/genética , Chaperonas Moleculares/química , alfa-Cristalinas/metabolismo , Cálcio/química , Cátions Bivalentes/química , Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida/métodos , Mutação , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Cristalinas/química , alfa-Cristalinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA