Your browser doesn't support javascript.
loading
Metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin by human hepatic CYP isoforms: evidence for selectivity towards CYP3A4.
Renwick, A B; Lewis, D F; Fulford, S; Surry, D; Williams, B; Worboys, P D; Cai, X; Wang, R W; Price, R J; Lake, B G; Evans, D C.
Afiliação
  • Renwick AB; TNO BIBRA International Ltd, Carshalton, Surrey, UK.
Xenobiotica ; 31(4): 187-204, 2001 Apr.
Article em En | MEDLINE | ID: mdl-11465405
ABSTRACT
1. The metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin (BFBFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomes and in cDNA-expressed human liver CYP isoforms. For purposes of comparison, some limited studies were also performed with 7-benzyloxyquinoline (7BQ). 2. Initial interactive docking studies with a homology model of human CYP3A4 indicated that BFBFC was likely to be a selective substrate for CYP3A4 with a relatively high binding affinity, due to the presence of several key hydrogen bonds with active site amino acid residues. 3. Kinetic analysis of NADPH-dependent BFBFC metabolism to HFC in three preparations of pooled human liver microsomes revealed mean (+/- TSEM) Km and Vmax = 4.6 +/- 0.3 microM and 20.0 +/- 3.8 pmol/min/mg protein, respectively. 4. The metabolism of BFBFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing a BFBFC substrate concentration of lO microM (i.e. around twice Km). Good correlations (r2 = 0.736-0.904) were observed between BFBFC metabolism and markers of CYP3A isoforms. 5. While 10O microM BFBFC was metabolized to HFC by cDNA-expressed CYP3A4, little or no metabolism was observed with cDNA-expressed CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. The metabolism of 10 microM BFBFC in human liver microsomes was markedly inhibited by 5-50 microM troleandomycin and 0.2-5 microM ketoconazole, but stimulated by 0.2-10 microM alpha-naphthoflavone. The metabolism of 10 microM BFBFC in human liver microsomes was also markedly inhibited by an antibody to CYP3A4. 7. Kinetic analysis of NADPH-dependent 7BQ metabolism to 7-hydroxyquinoline (7HQ) in human liver microsomes revealed Km and Vmax = 70 microM and 3.39 nmol/min/mg protein, respectively. 8. While 80 microM 7BQ was metabolized to 7HQ by cDNA-expressed CYP3A4, only low rates of metabolism were observed with cDNA-expressed CYPIA2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 9. In summary, by correlation analysis, the use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFBFC metabolism in human liver microsomes appears to be primarily catalysed by CYP3A4. BFBFC may be a useful fluorescent probe substrate for human hepatic CYP3A4, but compared with 7BQ has only a low rate of metabolism in human liver microsomes.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Cumarínicos / Hepatócitos / Sistema Enzimático do Citocromo P-450 / Oxigenases de Função Mista Idioma: En Ano de publicação: 2001 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Cumarínicos / Hepatócitos / Sistema Enzimático do Citocromo P-450 / Oxigenases de Função Mista Idioma: En Ano de publicação: 2001 Tipo de documento: Article