Your browser doesn't support javascript.
loading
Aspects of mineral structure in normally calcifying avian tendon.
Siperko, L M; Landis, W J.
Afiliação
  • Siperko LM; Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA.
J Struct Biol ; 135(3): 313-20, 2001 Sep.
Article em En | MEDLINE | ID: mdl-11722171
ABSTRACT
Structural characteristics of normally calcifying leg tendons of the domestic turkey Meleagris gallopavo have been observed for the first time by tapping mode atomic force microscopy (TMAFM), and phase as well as corresponding topographic images were acquired to gain insight into the features of mineralizing collagen fibrils and fibers. Analysis of different regions of the tendon has yielded new information concerning the structural interrelationships in vivo between collagen fibrils and fibers and mineral crystals appearing in the form of plates and plate aggregates. TMAFM images show numerous mineralized collagen structures exhibiting characteristic periodicity (54-70 nm), organized with their respective long axes parallel to each other. In some instances, mineral plates (30-40 nm thick) are found interspersed between and in intimate contact with the mineralized collagen. The edges of such plates lie parallel to the neighboring collagen. Many of these plates appear to be aligned to form larger aggregates (475-600 nm long x 75-90 nm thick) that also retain collagen periodicity along their exposed edges. Intrinsic structural properties of the mineralizing avian tendon have not previously been described on the scale reported in this study. These data provide the first visual evidence supporting the concept that larger plates form from parallel association of smaller ones, and the data fill a gap in knowledge between macromolecular- and anatomic-scale studies of the mineralization of avian tendon and connective tissues in general. The observed organization of mineralized collagen, plates, and plate aggregates maintaining a consistently parallel nature demonstrates the means by which increasing structural complexity may be achieved in a calcified tissue over greater levels of hierarchical order.
Assuntos
Palavras-chave
Buscar no Google
Base de dados: MEDLINE Assunto principal: Tendões / Minerais Idioma: En Ano de publicação: 2001 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Tendões / Minerais Idioma: En Ano de publicação: 2001 Tipo de documento: Article