Your browser doesn't support javascript.
loading
Sol-gel transition temperature of PLGA-g-PEG aqueous solutions.
Chung, Young-Me; Simmons, Kevin L; Gutowska, Anna; Jeong, Byeongmoon.
Afiliação
  • Chung YM; Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, K2-44, Richland, Washington 99352, USA.
Biomacromolecules ; 3(3): 511-6, 2002.
Article em En | MEDLINE | ID: mdl-12005522
Aqueous solutions of poly(DL-lactic acid-co-glycolic acid)-g-poly(ethylene glycol) copolymers exhibited sol-to-gel transition with increasing temperature. Further increase in temperature makes the system flow and form a sol phase again. Subcutaneous injection of a copolymer aqueous solution (0.5 mL) resulted in a formation of a hydrogel depot by temperature-sensitive sol-to-gel transition in a rat model. The reliable determination and control of sol-to-gel transition temperatures are the most important issues for this kind of sol-gel reversible hydrogel. The sol-to-gel transition temperature determined by the test tube inverting method, falling ball method, and dynamic mechanical analysis coincided within 1-2 degrees C. Fine tuning of the sol-to-gel transition temperature was achieved by varying the ionic strength of the polymer solutions and by mixing two polymer aqueous solutions with different sol-to-gel transition temperatures. The sol-to-gel transition temperature of polymer mixture aqueous solutions was well described by an empirical equation of miscible blends, indicating miscibility of the two polymer systems in water on the molecular level.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Poliglactina 910 / Materiais Biocompatíveis Idioma: En Ano de publicação: 2002 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Poliglactina 910 / Materiais Biocompatíveis Idioma: En Ano de publicação: 2002 Tipo de documento: Article