Your browser doesn't support javascript.
loading
On the bias of Huffcutt and Arthur's (1995) procedure for identifying outliers in the meta-analysis of correlations.
Beal, Daniel J; Corey, David M; Dunlap, William P.
Afiliação
  • Beal DJ; Department of Psychology, Tulane University, USA. dbeal@purdue.edu
J Appl Psychol ; 87(3): 583-9, 2002 Jun.
Article em En | MEDLINE | ID: mdl-12090616
This study documents how the use of A. I. Huffcutt & W. A. Arthur's (1995) sample adjusted meta-analytic deviancy (SAMD) statistic for identifying outliers in correlational meta-analyses results in inaccuracies in mean r. Monte Carlo simulations found that use of the SAMD resulted in the overidentification of small relative to large correlations as outliers. Furthermore, this tendency to overidentify small correlations was found to increase as the magnitude of the population correlation increased and resulted in mean rs that overestimated the population correlation. The implications for meta-analysts are discussed, and 2 possible solutions are offered.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Metanálise como Assunto / Modelos Estatísticos Idioma: En Ano de publicação: 2002 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Metanálise como Assunto / Modelos Estatísticos Idioma: En Ano de publicação: 2002 Tipo de documento: Article