Your browser doesn't support javascript.
loading
Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks.
van der Boom, Tamar; Hayes, Ryan T; Zhao, Yongyu; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R.
Afiliação
  • van der Boom T; Contribution from the Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113, USA.
J Am Chem Soc ; 124(32): 9582-90, 2002 Aug 14.
Article em En | MEDLINE | ID: mdl-12167053
Molecules designed to carry out photochemical energy conversion typically employ several sequential electron transfers, as do photosynthetic proteins. Yet, these molecules typically do not achieve the extensive charge transport characteristic of semiconductor devices. We have prepared a large molecule in which four perylene-3,4:9,10-tetracarboxydiimide (PDI) molecules that both collect photons and accept electrons are attached to a central zinc 5,10,15,20-tetraphenylporphyrin (ZnTPP) electron donor. This molecule self-assembles into ordered nanoparticles both in solution and in the solid-state, driven by van der Waals stacking of the PDI molecules. Photoexcitation of the nanoparticles results in quantitative charge separation in 3.2 ps to form ZnTPP(+)PDI(-) radical ion pairs, in which the radical anion rapidly migrates to PDI molecules that are, on average, 21 A away, as evidenced by magnetic field effects on the yield of the PDI triplet state that results from radical ion pair recombination. These nanoparticles exhibit charge transport properties that combine important features from both photosynthetic and semiconductor photoconversion systems.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2002 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2002 Tipo de documento: Article