A STAT-regulated, stress-induced signalling pathway in Dictyostelium.
J Cell Sci
; 116(Pt 14): 2907-15, 2003 Jul 15.
Article
em En
| MEDLINE
| ID: mdl-12771188
The Dictyostelium stalk cell inducer differentiation-inducing factor (DIF) directs tyrosine phosphorylation and nuclear accumulation of the STAT (signal transducer and activator of transcription) protein Dd-STATc. We show that hyperosmotic stress, heat shock and oxidative stress also activate Dd-STATc. Hyperosmotic stress is known to elevate intracellular cGMP and cAMP levels, and the membrane-permeant analogue 8-bromo-cGMP rapidly activates Dd-STATc, whereas 8-bromo-cAMP is a much less effective inducer. Surprisingly, however, Dd-STATc remains stress activatable in null mutants for components of the known cGMP-mediated and cAMP-mediated stress-response pathways and in a double mutant affecting both pathways. Also, Dd-STATc null cells are not abnormally sensitive to hyperosmotic stress. Microarray analysis identified two genes, gapA and rtoA, that are induced by hyperosmotic stress. Osmotic stress induction of gapA and rtoA is entirely dependent on Dd-STATc. Neither gene is inducible by DIF but both are rapidly inducible with 8-bromo-cGMP. Again, 8-bromo-cAMP is a much less potent inducer than 8-bromo-cGMP. These data show that Dd-STATc functions as a transcriptional activator in a stress-response pathway and the pharmacological evidence, at least, is consistent with cGMP acting as a second messenger.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Transdução de Sinais
/
Proteínas de Protozoários
/
Transativadores
/
GMP Cíclico
/
Dictyostelium
Idioma:
En
Ano de publicação:
2003
Tipo de documento:
Article