Your browser doesn't support javascript.
loading
Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.
Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J.
Afiliação
  • Gao RS; Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA. rgao@al.noaa.gov
Science ; 303(5657): 516-20, 2004 Jan 23.
Article em En | MEDLINE | ID: mdl-14739457
ABSTRACT
In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2004 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2004 Tipo de documento: Article