Your browser doesn't support javascript.
loading
Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides.
Catalone, Bradley J; Kish-Catalone, Tina M; Budgeon, Lynn R; Neely, Elizabeth B; Ferguson, Maelee; Krebs, Fred C; Howett, Mary K; Labib, Mohamed; Rando, Robert; Wigdahl, Brian.
Afiliação
  • Catalone BJ; Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
Antimicrob Agents Chemother ; 48(5): 1837-47, 2004 May.
Article em En | MEDLINE | ID: mdl-15105142
ABSTRACT
Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vagina / Vaginite / Colo do Útero / Anti-Infecciosos Locais Idioma: En Ano de publicação: 2004 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vagina / Vaginite / Colo do Útero / Anti-Infecciosos Locais Idioma: En Ano de publicação: 2004 Tipo de documento: Article