Your browser doesn't support javascript.
loading
New cobalt(II) and zinc(II) coordination frameworks incorporating a pyridyl-pyrazole ditopic ligand.
Mulyana, Yanyan; Kepert, Cameron J; Lindoy, Leonard F; Parkin, Andrew; Turner, Peter.
Afiliação
  • Mulyana Y; Centre for Heavy Metals Research, School of Chemistry, University of Sydney, NSW 2006, Australia.
Dalton Trans ; (9): 1598-601, 2005 May 05.
Article em En | MEDLINE | ID: mdl-15852108
ABSTRACT
The metal-directed assembly of new molecular frameworks incorporating 4-(4-pyridyl)pyrazole (L), containing non-linear coordination vectors, is presented. Three metallo-arrays of types [Co(LH)2(NO3)4], [Co(LH)2(H2O)4][NO3]4.H2O and [Zn2(L-H)2Cl2].2EtOH are reported. The cobalt(II) in [Co(LH)2(NO3)4] displays distorted octahedral geometry, with the two protonated pyridyl-pyrazole ligands coordinated through their pyrazole nitrogen atoms in a trans-orientation; the remaining four coordination sites are occupied by nitrate anions. Two internal hydrogen bonds occur between each pyrazole NH and the oxygens of adjacent coordinated nitrato ligands. Short intermolecular hydrogen bonds also occur between the two pyridinium hydrogens and bound nitrate ligands on different molecules to yield a two-dimensional hydrogen-bonded array. Two of these arrays interpenetrate to form an extended two dimensional layer; such layers stack throughout the crystal structure. A second product of type [Co(LH)2(H2O)4][NO3]4.H2O exists as two crystallographically independent, but chemically similar, forms. In each form, the two protonated pyridyl-pyrazole ligands occupy trans positions about the cobalt, with the remaining four coordination sites being filled by water molecules to yield a distorted octahedral coordination geometry. Intramolecular hydrogen-bonding is observed between the two non-coordinated pyrazoyl nitrogen atoms and bound water oxygen atoms. The third complex, [Zn2(L-H)2Cl2].2EtOH, contains dimer units consisting of two zinc(II) ions bridged by two pyrazoylate groups in which the coordination geometry of each zinc approximates a tetrahedron. Each zinc is bound to two deprotonated pyridine-pyrazole ligands (L-H), one pyridyl group (from a different dimeric unit) and one chloro ligand. Each pyridyl nitrogen thus connects each of these zinc dimers to an adjacent dimer unit, forming a three-dimensional network containing small voids. The latter are occupied by ethanol molecules which form hydrogen bonds to the chloro ligands.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2005 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2005 Tipo de documento: Article