Cell cycle arrest and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells.
Biochem Pharmacol
; 71(1-2): 32-41, 2005 Dec 19.
Article
em En
| MEDLINE
| ID: mdl-16298346
In a search for new anticancer agents, we have identified serratamolide (AT514), a cyclodepsipeptide from Serratia marcescens 2170 that induces cell cycle arrest and apoptosis in various cancer cell lines. A cell viability assay showed that the concentrations that cause 50% inhibition (IC50) in human cancer cell lines range from 5.6 to 11.5 microM depending on the cell line. Flow cytometry analysis revealed that AT514 caused cell cycle arrest in G0/G1 or cell death, depending on the cell type and the length of time for which the cells were exposed to the drug. Subsequent studies revealed that AT514-induced cell death is caused by apoptosis, as indicated by caspases activation (8, 9, 2 and 3) and cleavage of poly (ADP-ribose) polymerase (PARP), release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria, and the appearance of apoptotic bodies and DNA laddering. Alterations in protein levels of Bcl-2 family members might be involved in the mitochondrial disruption observed. AT514 induced p53 accumulation in wild-type p53 cells but cell death was observed in both deficient and wild-type p53 cells. Our results indicate that AT514 induces cell cycle arrest and apoptosis in breast cancer cells irrespectively of p53 status, suggesting that it might represent a potential new chemotherapeutic agent.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Mama
/
Ciclo Celular
/
Proteína Supressora de Tumor p53
/
Apoptose
/
Depsipeptídeos
/
Antineoplásicos
Idioma:
En
Ano de publicação:
2005
Tipo de documento:
Article