Product repression of alkane monooxygenase expression in Pseudomonas butanovora.
J Bacteriol
; 188(7): 2586-92, 2006 Apr.
Article
em En
| MEDLINE
| ID: mdl-16547046
Physiological and regulatory mechanisms that allow the alkane-oxidizing bacterium Pseudomonas butanovora to consume C2 to C8 alkane substrates via butane monooxygenase (BMO) were examined. Striking differences were observed in response to even- versus odd-chain-length alkanes. Propionate, the downstream product of propane oxidation and of the oxidation of other odd-chain-length alkanes following beta-oxidation, was a potent repressor of BMO expression. The transcriptional activity of the BMO promoter was reduced with as little as 10 microM propionate, even in the presence of appropriate inducers. Propionate accumulated stoichiometrically when 1-propanol and propionaldehyde were added to butane- and ethane-grown cells, indicating that propionate catabolism was inactive during growth on even-chain-length alkanes. In contrast, propionate consumption was induced (about 80 nmol propionate consumed.min(-1).mg protein(-1)) following growth on the odd-chain-length alkanes, propane and pentane. The induction of propionate consumption could be brought on by the addition of propionate or pentanoate to the growth medium. In a reporter strain of P. butanovora in which the BMO promoter controls beta-galactosidase expression, only even-chain-length alcohols (C2 to C8) induced beta-galactosidase following growth on acetate or butyrate. In contrast, both even- and odd-chain-length alcohols (C3 to C7) were able to induce beta-galactosidase following the induction of propionate consumption by propionate or pentanoate.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Propionatos
/
Pseudomonas
/
Regulação para Baixo
/
Regulação Bacteriana da Expressão Gênica
/
Oxigenases de Função Mista
Idioma:
En
Ano de publicação:
2006
Tipo de documento:
Article