Your browser doesn't support javascript.
loading
Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin.
Mrosek, Michael; Labeit, Dietmar; Witt, Stephanie; Heerklotz, Heiko; von Castelmur, Eleonore; Labeit, Siegfried; Mayans, Olga.
Afiliação
  • Mrosek M; Division of Structural Biology, Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland.
FASEB J ; 21(7): 1383-92, 2007 May.
Article em En | MEDLINE | ID: mdl-17215480
ABSTRACT
Titin forms an intrasarcomeric filament system in vertebrate striated muscle, which has elastic and signaling properties and is thereby central to mechanotransduction. Near its C-terminus and directly preceding a kinase domain, titin contains a conserved pattern of Ig and FnIII modules (Ig(A168)-Ig(A169)-FnIII(A170), hereby A168-A170) that recruits the E3 ubiquitin-ligase MuRF-1 to the filament. This interaction is thought to regulate myofibril turnover and the trophic state of muscle. We have elucidated the crystal structure of A168-A170, characterized MuRF-1 variants by circular dichroism (CD) and SEC-MALS, and studied the interaction of both components by isothermal calorimetry, SPOTS blots, and pull-down assays. This has led to the identification of the molecular determinants of the binding. A168-A170 shows an extended, rigid architecture, which is characterized by a shallow surface groove that spans its full length and a distinct loop protrusion in its middle point. In MuRF-1, a C-terminal helical domain is sufficient to bind A168-A170 with high affinity. This helical region predictably docks into the surface groove of A168-A170. Furthermore, pull-down assays demonstrate that the loop protrusion in A168-A170 is a key mediator of MuRF-1 recognition. Our findings indicate that this region of titin could serve as a target to attempt therapeutic inhibition of MuRF-1-mediated muscle turnover, where binding of small molecules to its distinctive structural features could block MuRF-1 access.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Ubiquitina-Proteína Ligases / Proteínas Musculares Idioma: En Ano de publicação: 2007 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Ubiquitina-Proteína Ligases / Proteínas Musculares Idioma: En Ano de publicação: 2007 Tipo de documento: Article