Your browser doesn't support javascript.
loading
Structures of ligand-free and inhibitor complexes of dihydroorotase from Escherichia coli: implications for loop movement in inhibitor design.
Lee, Mihwa; Chan, Camilla W; Graham, Stephen C; Christopherson, Richard I; Guss, J Mitchell; Maher, Megan J.
Afiliação
  • Lee M; School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia.
J Mol Biol ; 370(5): 812-25, 2007 Jul 27.
Article em En | MEDLINE | ID: mdl-17550785
ABSTRACT
Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamyl-L-aspartate (CA-asp) to L-dihydroorotate (DHO) in the de novo biosynthesis of pyrimidine nucleotides. DHOase is a potential anti-malarial drug target as malarial parasites can only synthesize pyrimidines via the de novo pathway and do not possess a salvage pathway. Here we report the structures of Escherichia coli DHOase crystallized without ligand (1.7 A resolution) and in the presence of the inhibitors 2-oxo-1,2,3,6-tetrahydropyrimidine-4,6-dicarboxylate (HDDP; 2.0 A) and 5-fluoroorotate (FOA, 2.2 A). These are the first crystal structures of DHOase-inhibitor complexes, providing structural information on the mode of inhibitor binding. HDDP possesses features of both the substrate and product, and ligates the Zn atoms in the active site. In addition, HDDP forms hydrogen bonds to the flexible loop (residues 105-115) stabilizing the "loop-in" conformation of the flexible loop normally associated with the presence of CA-asp in the active site. By contrast, FOA, a product-like inhibitor, binds to the active site in a similar fashion to DHO but does not ligate the Zn atoms directly nor stabilize the loop-in conformation. These structures define the necessary features for the future design of improved inhibitors of DHOase.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Zinco / Modelos Moleculares / Proteínas de Escherichia coli / Di-Hidro-Orotase Idioma: En Ano de publicação: 2007 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Zinco / Modelos Moleculares / Proteínas de Escherichia coli / Di-Hidro-Orotase Idioma: En Ano de publicação: 2007 Tipo de documento: Article