Your browser doesn't support javascript.
loading
Quenching mechanism of Zn(salicylaldimine) by nitroaromatics.
Germain, Meaghan E; Vargo, Thomas R; McClure, Beth Anne; Rack, Jeffrey J; Van Patten, P Gregory; Odoi, Michael; Knapp, Michael J.
Afiliação
  • Germain ME; Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA.
Inorg Chem ; 47(14): 6203-11, 2008 Jul 21.
Article em En | MEDLINE | ID: mdl-18576611
ABSTRACT
Nitroaromatics and nitroalkanes quench the fluorescence of Zn(Salophen) (H2Salophen = N,N'-phenylene-bis-(3,5-di- tert-butylsalicylideneimine); ZnL(R)) complexes. A structurally related family of ZnL(R) complexes (R = OMe, di-tBu, tBu, Cl, NO2) were prepared, and the mechanisms of fluorescence quenching by nitroaromatics were studied by a combined kinetics and spectroscopic approach. The fluorescent quantum yields for ZnL(R) were generally high (Phi approximately 0.3) with sub-nanosecond fluorescence lifetimes. The fluorescence of ZnL(R) was quenched by nitroaromatic compounds by a mixture of static and dynamic pathways, reflecting the ZnL(R) ligand bulk and reduction potential. Steady-state Stern-Volmer plots were curved for ZnL(R) with less-bulky substituents (R = OMe, NO2), suggesting that both static and dynamic pathways were important for quenching. Transient Stern-Volmer data indicated that the dynamic pathway dominated quenching for ZnL(R) with bulky substituents (R = tBu, DtBu). The quenching rate constants with varied nitroaromatics (ArNO2) followed the driving force dependence predicted for bimolecular electron transfer ZnL* + ArNO2 --> ZnL(+) + ArNO2(-). A treatment of the diffusion-corrected quenching rates with Marcus theory yielded a modest reorganization energy (lambda = 25 kcal/mol), and a small self-exchange reorganization energy for ZnL*/ZnL(+) (ca. 20 kcal/mol) was estimated from the Marcus cross-relation, suggesting that metal phenoxyls may be robust biological redox cofactors. Electronic structure calculations indicated very small changes in bond distances for the ZnL --> ZnL(+) oxidation, suggesting that solvation was the dominant contributor to the observed reorganization energy. These mechanistic insights provide information that will be helpful to further develop ZnL(R) as sensors, as well as for potential photoinduced charge transfer chemistry.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Organometálicos / Zinco / Compostos de Nitrogênio Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Organometálicos / Zinco / Compostos de Nitrogênio Idioma: En Ano de publicação: 2008 Tipo de documento: Article