Your browser doesn't support javascript.
loading
Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT.
Chiu, Ting-Lan; Wen, Zhimou; Rupasinghe, Sanjeewa G; Schuler, Mary A.
Afiliação
  • Chiu TL; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Proc Natl Acad Sci U S A ; 105(26): 8855-60, 2008 Jul 01.
Article em En | MEDLINE | ID: mdl-18577597
One of the challenges faced in malarial control is the acquisition of insecticide resistance that has developed in mosquitoes that are vectors for this disease. Anopheles gambiae, which has been the major mosquito vector of the malaria parasite Plasmodium falciparum in Africa, has over the years developed resistance to insecticides including dieldrin, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and pyrethroids. Previous microarray studies using fragments of 230 An. gambiae genes identified five P450 loci, including CYP4C27, CYP4H15, CYP6Z1, CYP6Z2, and CYP12F1, that showed significantly higher expression in the DDT-resistant ZAN/U strain compared with the DDT-susceptible Kisumu strain. To predict whether either of the CYP6Z1 and CYP6Z2 proteins might potentially metabolize DDT, we generated and compared molecular models of these two proteins with and without DDT docked in their catalytic sites. This comparison indicated that, although these two CYP6Z proteins share high sequence identity, their metabolic profiles were likely to differ dramatically from the larger catalytic site of CYP6Z1, potentially involved in DDT metabolism, and the more constrained catalytic site of CYP6Z2, not likely to metabolize DDT. Heterologous expressions of these proteins have corroborated these predictions: only CYP6Z1 is capable of metabolizing DDT. Overlays of these models indicate that slight differences in the backbone of SRS1 and variations of side chains in SRS2 and SRS4 account for the significant differences in their catalytic site volumes and DDT-metabolic capacities. These data identify CYP6Z1 as one important target for inhibitor design aimed at inactivating insecticide-metabolizing P450s in natural populations of this malarial mosquito.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Sistema Enzimático do Citocromo P-450 / DDT / Anopheles Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Sistema Enzimático do Citocromo P-450 / DDT / Anopheles Idioma: En Ano de publicação: 2008 Tipo de documento: Article