Optimization of yeast cell cycle analysis and morphological characterization by multispectral imaging flow cytometry.
Cytometry A
; 73(9): 825-33, 2008 Sep.
Article
em En
| MEDLINE
| ID: mdl-18613038
Budding yeast Saccharoymyces cerevisiae is a powerful model system for analyzing eukaryotic cell cycle regulation. Yeast cell cycle analysis is typically performed by visual analysis or flow cytometry, and both have limitations in the scope and accuracy of data obtained. This study demonstrates how multispectral imaging flow cytometry (MIFC) provides precise quantitation of cell cycle distribution and morphological phenotypes of yeast cells in flow. Cell cycle analysis of wild-type yeast, nap1Delta, and yeast overexpressing NAP1, was performed visually, by flow cytometry and by MIFC. Quantitative morphological analysis employed measurements of cellular length, thickness, and aspect ratio in an algorithm to calculate a novel feature, bud length. MIFC demonstrated reliable quantification of the yeast cell cycle compared to morphological and flow cytometric analyses. By employing this technique, we observed both the G2/M delay and elongated buds previously described in the nap1Delta strain. Using MIFC, we demonstrate that overexpression of NAP1 causes elongated buds yet only a minor disruption in the cell cycle. The different effects of NAP1 expression level on cell cycle and morphology suggests that these phenotypes are independent. Unlike conventional yeast flow cytometry, MIFC generates complete cell cycle profiles and concurrently offers multiple parameters for morphological analysis.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Saccharomyces cerevisiae
/
Ciclo Celular
/
Citometria por Imagem
/
Citometria de Fluxo
Idioma:
En
Ano de publicação:
2008
Tipo de documento:
Article