Your browser doesn't support javascript.
loading
Modeling of the adrenergic response of the human IKs current (hKCNQ1/hKCNE1) stably expressed in HEK-293 cells.
Imredy, John P; Penniman, Jacob R; Dech, Spencer J; Irving, Winston D; Salata, Joseph J.
Afiliação
  • Imredy JP; Safety and Exploratory Pharmacology, Safety Assessment, Merck Research Laboratories, West Point, PA 19486, USA. john_imredy@merck.com
Am J Physiol Heart Circ Physiol ; 295(5): H1867-81, 2008 Nov.
Article em En | MEDLINE | ID: mdl-18757482
ABSTRACT
Stable coexpression of human (h)KCNQ1 and hKCNE1 in human embryonic kidney (HEK)-293 cells reconstitutes a nativelike slowly activating delayed rectifier K+ current (HEK-I(Ks)), allowing beta-adrenergic modulation of the current by stimulation of endogenous receptors in the host cell line. HEK-I(Ks) was enhanced two- to fourfold by isoproterenol (EC50 = 13 nM), forskolin (10 microM), or 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (50 microM), indicating an intact cAMP-dependent ion channel-regulating pathway analogous to the PKA-dependent regulation observed in native cardiac myocytes. Activation kinetics of HEK-I(Ks) were accurately fit with a novel modified second-order Hodgkin-Huxley (H-H) gating model incorporating a fast and a slow gate, each independent of each other in scale and adrenergic response, or a "heterodimer" model. Macroscopically, beta-adrenergic enhancement shifted the current activation threshold to more negative potentials and accelerated activation kinetics while leaving deactivation kinetics relatively unaffected. Modeling of the current response using the H-H model indicated that observed changes in gating could be explained by modulation of the opening rate of the fast gate. Under control conditions at nearly physiological temperatures (35 degrees C), rate-dependent accumulation of HEK-I(Ks) was observed only at pulse frequencies exceeding 3 Hz. Rate-dependent accumulation of I(Ks) at high pulsing rate had two phases, an initial staircaselike effect followed by a slower, incremental accumulation phase. These phases are readily interpreted in the context of a heterodimeric H-H model with two independent gates with differing closing rates. In the presence of isoproterenol after normalizing for its tonic effects, rate-dependent accumulation of HEK-I(Ks) appeared at lower pulse frequencies and was slightly enhanced (approximately 25%) over control.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ativação do Canal Iônico / Receptores Adrenérgicos beta / Canais de Potássio de Abertura Dependente da Tensão da Membrana / Canal de Potássio KCNQ1 Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ativação do Canal Iônico / Receptores Adrenérgicos beta / Canais de Potássio de Abertura Dependente da Tensão da Membrana / Canal de Potássio KCNQ1 Idioma: En Ano de publicação: 2008 Tipo de documento: Article