Your browser doesn't support javascript.
loading
Predict prokaryotic proteins through detecting N-formylmethionine residues in protein sequences using support vector machine.
Yang, Zheng Rong.
Afiliação
  • Yang ZR; School of Biosciences, University of Exeter, Hatherly Building, Exeter, UK. Z.R.Yang@exeter.ac.uk
Biosystems ; 97(3): 141-5, 2009 Sep.
Article em En | MEDLINE | ID: mdl-19505530
Identifying prokaryotes in silico is commonly based on DNA sequences. In experiments where DNA sequences may not be immediately available, we need to have a different approach to detect prokaryotes based on RNA or protein sequences. N-formylmethionine (fMet) is known as a typical characteristic of prokaryotes. A web tool has been implemented here for predicting prokaryotes through detecting the N-formylmethionine residues in protein sequences. The predictor is constructed using support vector machine. An online predictor has been implemented using Python. The implemented predictor is able to achieve the total prediction accuracy 80% with the specificity 80% and the sensitivity 81%.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Procarióticas / Software / Proteínas / Classificação / Biologia Computacional / Internet / N-Formilmetionina Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Procarióticas / Software / Proteínas / Classificação / Biologia Computacional / Internet / N-Formilmetionina Idioma: En Ano de publicação: 2009 Tipo de documento: Article