Your browser doesn't support javascript.
loading
Intracellular cleavage of osteopontin by caspase-8 modulates hypoxia/reoxygenation cell death through p53.
Kim, Hyo-Jin; Lee, Ho-June; Jun, Joon-Il; Oh, Yumin; Choi, Seon-Guk; Kim, Hyunjoo; Chung, Chul-Woong; Kim, In-Ki; Park, Il-Sun; Chae, Han-Jung; Kim, Hyung-Ryong; Jung, Yong-Keun.
Afiliação
  • Kim HJ; Creative Research Initiative Acceleration Research, School of Biological Science/Bio-Max Institute, Seoul National University, Seoul 151-747, Korea.
Proc Natl Acad Sci U S A ; 106(36): 15326-31, 2009 Sep 08.
Article em En | MEDLINE | ID: mdl-19706414
Osteopontin (OPN) is highly expressed in cancer patients and plays important roles in many stages of tumor progression, such as anti-apoptosis, proliferation, and metastasis. From functional screening of human cDNA library, we isolated OPN as a caspase-8 substrate that regulates cell death during hypoxia/reoxygenation (Hyp/RO). In vitro cleavage assays demonstrate that OPN is cleaved at Asp-135 and Asp-157 by caspase-8. Cellular cleavage of OPN is observed in apoptotic cells exposed to Hyp/RO among various apoptotic stimuli and its cleavage is blocked by zVAD or IETD caspase inhibitor. Further, over-expression of OPN, the form with secretion signal, inhibits Hyp/RO-induced cell death. Caspase cleavage-defective OPN mutant (OPN D135A/D157A) is more efficient to suppress Hyp/RO-induced cell death than wild-type OPN. OPN D135A/D157A sustains AKT activity to increase cell viability through inhibition of caspase-9 during Hyp/RO. In addition, OPN is highly induced in some tumor cells during Hyp/RO, such as HeLa and Huh-7 cells, which is associated with their resistance to Hyp/RO by sustaining AKT activity. Notably, OPN C-terminal cleavage fragment produced by caspase-8 is detected in the nucleus. Plasmid-encoded expression of OPN C-terminal cleavage fragment increases p53 protein level and induces apoptosis of wild-type mouse embryonic fibroblast cells, but not p53(-/-) mouse embryonic fibroblast cells. These observations suggest that the protective function of OPN during Hyp/RO is inactivated via the proteolytic cleavage by caspase-8 and its cleavage product subsequently induces cell death via p53, postulating caspase-8 as a negative regulator of tumorigenic activity of OPN.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hipóxia Celular / Proteína Supressora de Tumor p53 / Apoptose / Caspase 8 / Osteopontina Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hipóxia Celular / Proteína Supressora de Tumor p53 / Apoptose / Caspase 8 / Osteopontina Idioma: En Ano de publicação: 2009 Tipo de documento: Article