Your browser doesn't support javascript.
loading
PKC-permitted elevation of sarcolemmal KATP concentration may explain female-specific resistance to myocardial infarction.
Edwards, Andrew G; Rees, Meredith L; Gioscia, Rachel A; Zachman, Derek K; Lynch, Joshua M; Browder, Jason C; Chicco, Adam J; Moore, Russell L.
Afiliação
  • Edwards AG; University of Colorado at Boulder, 354 UCB, Boulder, CO 80309-0354, USA.
J Physiol ; 587(Pt 23): 5723-37, 2009 Dec 01.
Article em En | MEDLINE | ID: mdl-19805744
ABSTRACT
The female myocardium, relative to that of the male, exhibits sustained resistance to ischaemic tissue injury, a phenomenon termed sex-specific cardioprotection (SSC). SSC is dependent upon the sarcolemmal K(ATP) channel (sarcK(ATP)), and protein kinase C (PKC). Here we investigate whether PKC-mediated regulation of sarcK(ATP) concentration can explain this endogenous form of protection. Hearts from male (M) and female (F) rats were Langendorff-perfused for 30 min prior to either regional ischaemia-reperfusion (I/R), or global ischaemia (GISC). For both protocols, pre-ischaemic blockade of PKC was achieved by chelerythrine (Chel) in male (M + C) and female (F + C) hearts. Additional female hearts underwent sarcK(ATP) antagonism during I/R by HMR-1098 (HMR), either alone or in combination with Chel (HMR + Chel). GISC hearts were fractionated to assess cellular distribution of PKC and sarcK(ATP). Sex-specific infarct resistance was apparent under control I/R (F, 23 +/- 3% vs. M, 36 +/- 4%, P < 0.05) and abolished by Chel (F + C, 36 +/- 3%). Female infarct resistance was susceptible to sarcK(ATP) blockade (Control, 16 +/- 2% vs. HMR, 27 +/- 3%), and PKC blockade had no additional effect (HMR + Chel, 26 +/- 2%). The prevalence of Kir6.2 and SUR2 was higher in the sarcolemmal fractions of females (Kir6.2 F, 1.24 +/- 0.07 vs. M, 1.02 +/- 0.06; SUR2 F, 3.16 +/- 0.22 vs. M, 2.45 +/- 0.09; ratio units), but normalized by Chel (Kir6.2 F, 1.06 +/- 0.07 vs. M, 0.99 +/- 0.06; SUR2 F, 2.99 +/- 0.09 vs. M, 2.82 +/- 0.22, M; ratio units). Phosphorylation of sarcolemmal PKC was reduced by Chel (p-PKC/PKC control, 0.43 +/- 0.02; Chel, 0.29 +/- 0.01; P < 0.01). We conclude that PKC-mediated regulation of sarcK(ATP) may account for the physiologically sustainable dependence of SSC upon both PKC and sarcK(ATP), and that this regulation involves PKC-permitted enrichment of the female sarcolemma with sarcK(ATP). As such, the PKC-sarcK(ATP) axis may represent a target for sustainable prophylactic induction of cardioprotection.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sarcolema / Proteína Quinase C / Canais KATP / Infarto do Miocárdio Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sarcolema / Proteína Quinase C / Canais KATP / Infarto do Miocárdio Idioma: En Ano de publicação: 2009 Tipo de documento: Article