Your browser doesn't support javascript.
loading
A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung Y; Kim, Tae-Seong.
Afiliação
  • Khan AM; Department of Computer Engineering, Kyung Hee University, Yongin-si 446-701, Korea. kadil@oslab.khu.ac.kr
IEEE Trans Inf Technol Biomed ; 14(5): 1166-72, 2010 Sep.
Article em En | MEDLINE | ID: mdl-20529753
Physical-activity recognition via wearable sensors can provide valuable information regarding an individual's degree of functional ability and lifestyle. In this paper, we present an accelerometer sensor-based approach for human-activity recognition. Our proposed recognition method uses a hierarchical scheme. At the lower level, the state to which an activity belongs, i.e., static, transition, or dynamic, is recognized by means of statistical signal features and artificial-neural nets (ANNs). The upper level recognition uses the autoregressive (AR) modeling of the acceleration signals, thus, incorporating the derived AR-coefficients along with the signal-magnitude area and tilt angle to form an augmented-feature vector. The resulting feature vector is further processed by the linear-discriminant analysis and ANNs to recognize a particular human activity. Our proposed activity-recognition method recognizes three states and 15 activities with an average accuracy of 97.9% using only a single triaxial accelerometer attached to the subject's chest.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Sinais Assistido por Computador / Redes Neurais de Computação / Monitorização Ambulatorial / Atividade Motora Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Sinais Assistido por Computador / Redes Neurais de Computação / Monitorização Ambulatorial / Atividade Motora Idioma: En Ano de publicação: 2010 Tipo de documento: Article