Your browser doesn't support javascript.
loading
Small interannual variability of global atmospheric hydroxyl.
Montzka, S A; Krol, M; Dlugokencky, E; Hall, B; Jöckel, P; Lelieveld, J.
Afiliação
  • Montzka SA; NOAA Earth System Research Laboratory, Boulder, CO 80305, USA. stephen.a.montzka@noaa.gov
Science ; 331(6013): 67-9, 2011 Jan 07.
Article em En | MEDLINE | ID: mdl-21212353
ABSTRACT
The oxidizing capacity of the global atmosphere is largely determined by hydroxyl (OH) radicals and is diagnosed by analyzing methyl chloroform (CH(3)CCl(3)) measurements. Previously, large year-to-year changes in global mean OH concentrations have been inferred from such measurements, suggesting that the atmospheric oxidizing capacity is sensitive to perturbations by widespread air pollution and natural influences. We show how the interannual variability in OH has been more precisely estimated from CH(3)CCl(3) measurements since 1998, when atmospheric gradients of CH(3)CCl(3) had diminished as a result of the Montreal Protocol. We infer a small interannual OH variability as a result, indicating that global OH is generally well buffered against perturbations. This small variability is consistent with measurements of methane and other trace gases oxidized primarily by OH, as well as global photochemical model calculations.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2011 Tipo de documento: Article