Your browser doesn't support javascript.
loading
Endogenous GABA(A) and GABA(B) receptor-mediated electrical suppression is critical to neuronal anoxia tolerance.
Pamenter, Matthew E; Hogg, David W; Ormond, Jake; Shin, Damian S; Woodin, Melanie A; Buck, Leslie T.
Afiliação
  • Pamenter ME; Department of Pediatrics, University of California at San Diego, La Jolla, CA 92037, USA.
Proc Natl Acad Sci U S A ; 108(27): 11274-9, 2011 Jul 05.
Article em En | MEDLINE | ID: mdl-21690381
ABSTRACT
Anoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e., spike arrest; SA) and cell death does not occur. The mechanism(s) of SA is unknown but likely involves GABAergic synaptic transmission, because GABA concentration increases dramatically in anoxic turtle brain. We investigated this possibility in turtle cortical neurons exposed to anoxia and/or GABA(A/B) receptor (GABAR) modulators. Anoxia increased endogenous slow phasic GABAergic activity, and both anoxia and GABA reversibly induced SA by increasing GABA(A)R-mediated postsynaptic activity and Cl(-) conductance, which eliminated the Cl(-) driving force by depolarizing membrane potential (∼8 mV) to GABA receptor reversal potential (∼-81 mV), and dampened excitatory potentials via shunting inhibition. In addition, both anoxia and GABA decreased excitatory postsynaptic activity, likely via GABA(B)R-mediated inhibition of presynaptic glutamate release. In combination, these mechanisms increased the stimulation required to elicit an action potential >20-fold, and excitatory activity decreased >70% despite membrane potential depolarization. In contrast, anoxic neurons cotreated with GABA(A+B)R antagonists underwent seizure-like events, deleterious Ca(2+) influx, and cell death, a phenotype consistent with excitotoxic cell death in anoxic mammalian brain. We conclude that increased endogenous GABA release during anoxia mediates SA by activating an inhibitory postsynaptic shunt and inhibiting presynaptic glutamate release. This represents a natural adaptive mechanism in which to explore strategies to protect mammalian brain from low-oxygen insults.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tartarugas / Hipóxia Encefálica / Receptores de GABA-B / Receptores de GABA-A Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tartarugas / Hipóxia Encefálica / Receptores de GABA-B / Receptores de GABA-A Idioma: En Ano de publicação: 2011 Tipo de documento: Article