Your browser doesn't support javascript.
loading
Modification of milk fatty acid composition by feeding forages and agro-industrial byproducts from dry areas to Awassi sheep.
Abbeddou, S; Rischkowsky, B; Richter, E K; Hess, H D; Kreuzer, M.
Afiliação
  • Abbeddou S; ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland.
J Dairy Sci ; 94(9): 4657-68, 2011 Sep.
Article em En | MEDLINE | ID: mdl-21854938
ABSTRACT
The study tested the hypothesis that certain underused forages and agro-industrial byproducts available in dry areas may positively influence fatty acid (FA) composition and antioxidative properties of milk by their contents of residual oil or phenolic compounds or both. Sixty multiparous fat-tailed Awassi ewes were allocated to 6 groups in a completely randomized block design. During 50 d, the ewes were group-fed 2.5 kg of dry matter/d per ewe 1 of 6 isonitrogenous and isoenergetic diets (forageconcentrate, 0.30.7). The test feeds, comprising 30% of the diets, replaced either barley straw [lentil straw, olive leaves, and Atriplex (saltbush) leaves, rich in phenolic compounds or electrolytes] or conventional concentrate ingredients (olive cake and tomato pomace; ∼10% lipids) from the control diet. The diets containing olive cake and tomato pomace were rich in oleic acid (181 cis-9; 27% of total dietary FA) and linoleic acid (182 cis-9,cis-12; 37%), respectively. Profiles of FA were determined in individual milk samples drawn on d 0 and in wk 1, 3, 5 and 7. Data was analyzed by repeated measurement analysis. No consistent treatment effects on yield and gross nutrient composition of the milk were observed, although some differences occurred. Milk resulting from the Atriplex leaf diet expressed the highest antiradical activity, which was low with control and olive leaves. Feeding the tomato pomace and olive cake diets decreased the proportions of short- and medium-chain FA, whereas oleic acid clearly increased in proportion to total FA. Olive leaves most effectively increased rumenic acid (182 cis-9,trans-11) and α-linolenic acid (183 cis-9,cis-12,cis-15) in milk fat. This also resulted in the highest α-linolenic acid transfer rate from feed to milk and suggests that olive leaves affect ruminal biohydrogenation at several steps. Several alternative feeds exist with an added value, as they enhance FA with potential health benefits and the stability of the milk with higher antioxidative activity, even though responses to test feeds differed largely. It remains to be investigated whether combinations of these feeds would be complementary in these beneficial effects.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leite / Ácidos Graxos / Ração Animal Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leite / Ácidos Graxos / Ração Animal Idioma: En Ano de publicação: 2011 Tipo de documento: Article