Your browser doesn't support javascript.
loading
Support loss and Q factor enhancement for a rocking mass microgyroscope.
Wang, Xiong; Xiao, Dingbang; Zhou, Zelong; Wu, Xuezhong; Chen, Zhihua; Li, Shengyi.
Afiliação
  • Wang X; School of Mechanical Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073, China. wangxiong0081@sina.com
Sensors (Basel) ; 11(10): 9807-19, 2011.
Article em En | MEDLINE | ID: mdl-22163727
ABSTRACT
A rocking mass gyroscope (RMG) is a kind of vibrating mass gyroscope with high sensitivity, whose driving mode and sensing mode are completely uniform. MEMS RMG devices are a research hotspot now because they have the potential to be used in space applications. Support loss is the dominant energy loss mechanism influencing their high sensitivity. An accurate analytical model of support loss for RMGs is presented to enhance their Q factors. The anchor type and support loss mechanism of an RMG are analyzed. Firstly, the support loads, powers flowing into support structure, and vibration energy of an RMG are all developed. Then the analytical model of support loss for the RMG is developed, and its sensitivities to the main structural parameters are also analyzed. High-Q design guidelines for rocking mass microgyroscopes are deduced. Finally, the analytical model is validated by the experimental data and the data from the existing literature. The thicknesses of the prototypes are reduced from 240 µm to 60 µm, while Q factors increase from less than 150 to more than 800. The derived model is general and applicable to various beam resonators, providing significant insight to the design of high-Q MEMS devices.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas Microeletromecânicos Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sistemas Microeletromecânicos Idioma: En Ano de publicação: 2011 Tipo de documento: Article