Your browser doesn't support javascript.
loading
Drug delivery system for poorly water-soluble compounds using lipocalin-type prostaglandin D synthase.
Fukuhara, Ayano; Nakajima, Hidemitsu; Miyamoto, Yuya; Inoue, Katsuaki; Kume, Satoshi; Lee, Young-Ho; Noda, Masanori; Uchiyama, Susumu; Shimamoto, Shigeru; Nishimura, Shigenori; Ohkubo, Tadayasu; Goto, Yuji; Takeuchi, Tadayoshi; Inui, Takashi.
Afiliação
  • Fukuhara A; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan.
J Control Release ; 159(1): 143-50, 2012 Apr 10.
Article em En | MEDLINE | ID: mdl-22226778
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily and a secretory lipid-transporter protein, which binds a wide variety of hydrophobic small molecules. Here we show the feasibility of a novel drug delivery system (DDS), utilizing L-PGDS, for poorly water-soluble compounds such as diazepam (DZP), a major benzodiazepine anxiolytic drug, and 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist and anticonvulsant. Calorimetric experiments revealed for both compounds that each L-PGDS held three molecules with high binding affinities. By mass spectrometry, the 1:3 complex of L-PGDS and NBQX was observed. L-PGDS of 500µM increased the solubility of DZP and NBQX 7- and 2-fold, respectively, compared to PBS alone. To validate the potential of L-PGDS as a drug delivery vehicle in vivo, we have proved the prospective effects of these compounds via two separate delivery strategies. First, the oral administration of a DZP/L-PGDS complex in mice revealed an increased duration of pentobarbital-induced loss of righting reflex. Second, the intravenous treatment of ischemic gerbils with NBQX/L-PGDS complex showed a protective effect on delayed neuronal cell death at the hippocampal CA1 region. We propose that our novel DDS could facilitate pharmaceutical development and clinical usage of various water-insoluble compounds.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinoxalinas / Ansiolíticos / Oxirredutases Intramoleculares / Diazepam / Lipocalinas / Anticonvulsivantes Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinoxalinas / Ansiolíticos / Oxirredutases Intramoleculares / Diazepam / Lipocalinas / Anticonvulsivantes Idioma: En Ano de publicação: 2012 Tipo de documento: Article