Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.
Insect Biochem Mol Biol
; 42(6): 435-45, 2012 Jun.
Article
em En
| MEDLINE
| ID: mdl-22426196
The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 µM and 3 µM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 µM and 3.1 µM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Abelhas
/
Adenilil Ciclases
/
Proteínas de Insetos
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article