Your browser doesn't support javascript.
loading
A high sensitivity three-dimensional-shape sensing patch prepared by lithography and inkjet printing.
Huang, Yi-Ren; Kuo, Sheng-An; Stach, Michal; Liu, Chia-Hsing; Liao, Kuan-Hsun; Lo, Cheng-Yao.
Afiliação
  • Huang YR; Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsin Chu 30013, Taiwan. yrhuangsun@gmail.com
Sensors (Basel) ; 12(4): 4172-86, 2012.
Article em En | MEDLINE | ID: mdl-22666025
A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS) sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 × 10(-2) mm(-1) and the sensing patch has a thickness of less than 130 µm and 20 × 20 mm(2) dimensions. A complete finite element method (FEM) model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD) inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article