Your browser doesn't support javascript.
loading
Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability.
Kim, Hyun-Suk; Park, Joon Seok; Jeong, Hyun-Kwang; Son, Kyoung Seok; Kim, Tae Sang; Seon, Jong-Baek; Lee, Eunha; Chung, Jae Gwan; Kim, Dae Hwan; Ryu, Myungkwan; Lee, Sang Yoon.
Afiliação
  • Kim HS; Display Device Lab, Samsung Advanced Institute of Technology, Yongin, 446-712, Republic of Korea.
ACS Appl Mater Interfaces ; 4(10): 5416-21, 2012 Oct 24.
Article em En | MEDLINE | ID: mdl-22957907
ABSTRACT
A novel method to design metal oxide thin-film transistor (TFT) devices with high performance and high photostability for next-generation flat-panel displays is reported. Here, we developed bilayer metal oxide TFTs, where the front channel consists of indium-zinc-oxide (IZO) and the back channel material on top of it is hafnium-indium-zinc-oxide (HIZO). Density-of-states (DOS)-based modeling and device simulation were performed in order to determine the optimum thickness ratio within the IZO/HIZO stack that results in the best balance between device performance and stability. As a result, respective values of 5 and 40 nm for the IZO and HIZO layers were determined. The TFT devices that were fabricated accordingly exhibited mobility values up to 48 cm(2)/(V s), which is much elevated compared to pure HIZO TFTs (∼13 cm(2)/(V s)) but comparable to pure IZO TFTs (∼59 cm(2)/(V s)). Also, the stability of the bilayer device (-1.18 V) was significantly enhanced compared to the pure IZO device (-9.08 V). Our methodology based on the subgap DOS model and simulation provides an effective way to enhance the device stability while retaining a relatively high mobility, which makes the corresponding devices suitable for ultradefinition, large-area, and high-frame-rate display applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article