Your browser doesn't support javascript.
loading
Prostaglandin and myokine involvement in the cyclooxygenase-inhibiting drug enhancement of skeletal muscle adaptations to resistance exercise in older adults.
Trappe, Todd A; Standley, Robert A; Jemiolo, Bozena; Carroll, Chad C; Trappe, Scott W.
Afiliação
  • Trappe TA; Human Performance Laboratory, Ball State Univ., Muncie, IN. USA. ttrappe@bsu.edu
Am J Physiol Regul Integr Comp Physiol ; 304(3): R198-205, 2013 Feb.
Article em En | MEDLINE | ID: mdl-23220477
ABSTRACT
Twelve weeks of resistance training (3 days/wk) combined with daily consumption of the cyclooxygenase-inhibiting drugs acetaminophen (4.0 g/day; n = 11, 64 ± 1 yr) or ibuprofen (1.2 g/day; n = 13, 64 ± 1 yr) unexpectedly promoted muscle mass and strength gains 25-50% above placebo (n = 12, 67 ± 2 yr). To investigate the mechanism of this adaptation, muscle biopsies obtained before and ∼72 h after the last training bout were analyzed for mRNA levels of prostaglandin (PG)/cyclooxygenase pathway enzymes and receptors [arachidonic acid

synthesis:

cytosolic phospholipase A(2) (cPLA(2)) and secreted phospholipase A(2) (sPLA(2)); PGF(2α)

synthesis:

PGF(2α) synthase and PGE(2) to PGF(2α) reductase; PGE(2)

synthesis:

PGE(2) synthase-1, -2, and -3; PGF(2α) receptor and PGE(2) receptor-4], cytokines and myokines involved in skeletal muscle adaptation (TNF-α, IL-1ß, IL-6, IL-8, IL-10), and regulators of muscle growth [myogenin, myogenic regulatory factor-4 (MRF4), myostatin] and atrophy [Forkhead box O3A (FOXO3A), atrogin-1, muscle RING finger protein 1 (MuRF-1), inhibitory κB kinase ß (IKKß)]. Training increased (P < 0.05) cPLA(2), PGF(2α) synthase, PGE(2) to PGF(2α) reductase, PGE(2) receptor-4, TNF-α, IL-1ß, IL-8, and IKKß. However, the PGF(2α) receptor was upregulated (P < 0.05) only in the drug groups, and the placebo group upregulation (P < 0.05) of IL-6, IL-10, and MuRF-1 was eliminated in both drug groups. These results highlight prostaglandin and myokine involvement in the adaptive response to exercise in older individuals and suggest two mechanisms underlying the enhanced muscle mass gains in the drug groups 1) The drug-induced PGF(2α) receptor upregulation helped offset the drug suppression of PGF(2α)-stimulated protein synthesis after each exercise bout and enhanced skeletal muscle sensitivity to this stimulation. 2) The drug-induced suppression of intramuscular PGE(2) production increased net muscle protein balance after each exercise bout through a reduction in PGE(2)-induced IL-6 and MuRF-1, both promoters of muscle loss.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neuropeptídeos / Prostaglandinas / Inibidores de Ciclo-Oxigenase / Músculo Esquelético / Treinamento Resistido / Substâncias para Melhoria do Desempenho / Pessoa de Meia-Idade Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neuropeptídeos / Prostaglandinas / Inibidores de Ciclo-Oxigenase / Músculo Esquelético / Treinamento Resistido / Substâncias para Melhoria do Desempenho / Pessoa de Meia-Idade Idioma: En Ano de publicação: 2013 Tipo de documento: Article