Your browser doesn't support javascript.
loading
The human insula: Architectonic organization and postmortem MRI registration.
Morel, A; Gallay, M N; Baechler, A; Wyss, M; Gallay, D S.
Afiliação
  • Morel A; Center for Clinical Research, University Hospital Zürich, Sternwartstrasse 6, CH-8091 Zürich, Switzerland. aemorel@gmail.com
Neuroscience ; 236: 117-35, 2013 Apr 16.
Article em En | MEDLINE | ID: mdl-23340245
ABSTRACT
The human insula has been the focus of great attention in the last decade due to substantial progress in neuroimaging methodology and applications. Anatomical support for functional localization and interpretations, however, is still fragmented. The aim of the present study was to re-examine the microanatomical organization of the insula and relate cytoarchitectonic maps to major sulcal/gyral patterns by registration to high-resolution MR images of the same brains. The insula was divided into seven architectonic subdivisions (G, Ig, Id1-3, Ia1-2) that were charted on unfolded maps of the insula following a method used previously in monkeys. The results reveal overall similar patterns of Nissl, and to some extent also, myelin and parvalbumin (PV), as in monkeys, with a postero-dorsal to antero-ventral gradient of hypergranular to granular, dysgranular and agranular fields. Reversals occur ventrally along the inferior peri-insular sulcus (IPS), at the margin with the temporal operculum, and anteriorly at the limit with orbitofrontal cortex (OFC). A large portion of agranular cortex is characterized by a dense accumulation of the spindle-shaped von Economo neurons (VENs) in layer V. The distribution of VENs is not restricted to agranular insula but also extends into the anterior part of dysgranular fields. The patterns of intracortical myelin and of PV neuropil in the middle layers follow decreasing gradients from postero-dorsal granular to antero-ventral agranular insula, with particularly strong staining in posterior and dorsal insula. A separate PV enhanced area in the middle-dorsal insula corresponds in location to the presumed human gustatory area. Projections of the cytoarchitectonic maps onto high-resolution stereotactic MRI reveal a near concentric organization around the limen insula, with each cytoarchitectonic subdivision encompassing several major insular gyri/sulci. The dysgranular domain is the largest, taking up about half of the insula. The present study of the human insula provides a new anatomical basis for MR imaging and clinical applications.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Córtex Cerebral Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Córtex Cerebral Idioma: En Ano de publicação: 2013 Tipo de documento: Article