Your browser doesn't support javascript.
loading
Critical properties of a superdiffusive epidemic process.
da Silva, M B; Macedo-Filho, A; Albuquerque, E L; Serva, M; Lyra, M L; Fulco, U L.
Afiliação
  • da Silva MB; Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, Rio Grande do Norte, Brazil.
Article em En | MEDLINE | ID: mdl-23848628
We introduce a superdiffusive one-dimensional epidemic process model on which infection spreads through a contact process. Healthy (A) and infected (B) individuals can jump with distinct probabilities D(A) and D(B) over a distance ℓ distributed according to a power-law probability P(ℓ)[proportionality]1/ℓ(µ). For µ≥3 the propagation is equivalent to diffusion, while µ<3 corresponds to Lévy flights. In the D(A)>D(B) diffusion regime, field-theoretical results have suggested a first-order transition, a prediction not supported by several numerical studies. An extensive numerical study of the critical behavior in both the diffusive (µ≥3) and superdiffusive (µ<3) D(A)>D(B) regimes is also reported. We employed a finite-size scaling analysis to obtain the critical point as well as the static and dynamic critical exponents for several values of µ. All data support a second-order phase transition with continuously varying critical exponents which do not belong to the directed percolation universality class.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Doenças Transmissíveis / Surtos de Doenças / Modelos Estatísticos / Transmissão de Doença Infecciosa Idioma: En Ano de publicação: 2013 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Doenças Transmissíveis / Surtos de Doenças / Modelos Estatísticos / Transmissão de Doença Infecciosa Idioma: En Ano de publicação: 2013 Tipo de documento: Article