Your browser doesn't support javascript.
loading
A bioinformatics approach identifies signal transducer and activator of transcription-3 and checkpoint kinase 1 as upstream regulators of kidney injury molecule-1 after kidney injury.
Ajay, Amrendra Kumar; Kim, Tae-Min; Ramirez-Gonzalez, Victoria; Park, Peter J; Frank, David A; Vaidya, Vishal S.
Afiliação
  • Ajay AK; Renal Division, Department of Medicine.
J Am Soc Nephrol ; 25(1): 105-18, 2014 Jan.
Article em En | MEDLINE | ID: mdl-24158981
Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Receptores Virais / Glicoproteínas de Membrana / Moléculas de Adesão Celular / Fator de Transcrição STAT3 / Injúria Renal Aguda Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Receptores Virais / Glicoproteínas de Membrana / Moléculas de Adesão Celular / Fator de Transcrição STAT3 / Injúria Renal Aguda Idioma: En Ano de publicação: 2014 Tipo de documento: Article