Microbial abundance and activities in relation to water potential in the vadose zones of arid and semiarid sites.
Microb Ecol
; 26(1): 59-78, 1993 Jul.
Article
em En
| MEDLINE
| ID: mdl-24189989
Numbers and activities of microorganisms were measured in the vadose zones of three arid and semiarid areas of the western United States, and the influence of water availability was determined. These low-moisture environments have vadose zones that are commonly hundreds of meters thick. The specific sampling locations chosen were on or near U.S. Department of Energy facilities: the Nevada Test Site (NTS), the Idaho National Engineering Laboratory (INEL), and the Hanford Site (HS) in southcentral Washington State. Most of the sampling locations were uncontaminated, but geologically representative of nearby locations with storage and/or leakage of waste compounds in the vadose zone. Lithologies of samples included volcanic tuff, basalt, glaciofluvial and fluvial sediments, and paleosols (buried soils). Samples were collected aseptically, either by drilling bore-holes (INEL and HS), or by excavation within tunnels (NTS) and outcrop faces (paleosols near the HS). Total numbers of microorganisms were counted using direct microscopy, and numbers of culturable microorganisms were determined using plate-count methods. Desiccation-tolerant microorganisms were quantified by plate counts performed after 24 h desiccation of the samples. Mineralization of (14)C-labeled glucose and acetate was quantified in samples at their ambient moisture contents, in dried samples, and in moistened samples, to test the hypothesis that water limits microbial activities in vadose zones. Total numbers of microorganisms ranged from log 4.5 to 7.1 cells g(-1) dry wt. Culturable counts ranged from log <2 to 6.7 CFU g(-1) dry wt, with the highest densities occurring in paleosol (buried soil) samples. Culturable cells appeared to be desiccation-tolerant in nearly all samples that had detectable viable heterotrophs. Water limited mineralization in some, but not all samples, suggesting that an inorganic nutrient or other factor may limit microbial activities in some vadose zone environments.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
1993
Tipo de documento:
Article