Your browser doesn't support javascript.
loading
Inference of tumor phylogenies with improved somatic mutation discovery.
Salari, Raheleh; Saleh, Syed Shayon; Kashef-Haghighi, Dorna; Khavari, David; Newburger, Daniel E; West, Robert B; Sidow, Arend; Batzoglou, Serafim.
Afiliação
  • Salari R; 1 Department of Computer Science, Stanford University , Stanford, California.
J Comput Biol ; 20(11): 933-44, 2013 Nov.
Article em En | MEDLINE | ID: mdl-24195709
Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single-nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple, related samples over the accuracy of GATK's Unified Genotyper, the state-of-the-art multisample SNV caller.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise Mutacional de DNA / Polimorfismo de Nucleotídeo Único / Neoplasias Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise Mutacional de DNA / Polimorfismo de Nucleotídeo Único / Neoplasias Idioma: En Ano de publicação: 2013 Tipo de documento: Article