Your browser doesn't support javascript.
loading
Large work function reduction by adsorption of a molecule with a negative electron affinity: pyridine on ZnO(1010).
Hofmann, Oliver T; Deinert, Jan-Christoph; Xu, Yong; Rinke, Patrick; Stähler, Julia; Wolf, Martin; Scheffler, Matthias.
Afiliação
  • Hofmann OT; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
J Chem Phys ; 139(17): 174701, 2013 Nov 07.
Article em En | MEDLINE | ID: mdl-24206316
Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO(1010), we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function changes is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article